Hadronic Parallel Session 3: New models

Overview

- A. Heikinnen, ABLA/INCL
- M. Kosov, CHIPS
- T. Koi, Ion-ion
- V. Grichine, Diffuse elastic
- D. Wright, RPG
- P. Trusscot, new regirements

INCL/ABLA phyiscs

Physical content in short

INCL4:

Series of indep. NN interactions $(\lambda_b = h/p) < (\Lambda = 1/p.\sigma_{NN}.f)$ in a potential NN->NN; NN->N Δ ; $\Delta <=>N\pi$; Δ scattering (No 2π channels)

All particles explicitly followed in time; straight trajectories (no refraction) r-space density: realistic Wood-Saxon; p-space density: Fermi level. Pauli blocking (local-statistic) and long range correlation

Stopping time fixed once for ever from emission rates

NO ad hoc PARAMETERS in the MODEL! (Gives also σ_{Reso} and normalisations)

(No y and radioactive decay)

In conclusion

- INCL candidate tag is now ready. It contains set of tests, an example application, and a short documentation for Physics Reference Manual.
- In ABLA testing we have have found problems in fission, yet candidate tag for December release should come in time.
- We will proceed with re-modeling of INCL code. A significant requirement/complication is that we want to synchronize design Geant4 and stand-alone C++ version of INCL.
- We seem to have now enough manpower to attack these issues:
 - Pekka Kaitaniemi is starting in November his INCL relates PhD work at CEA.
 - Also, a significant contribution might come from INFN-Catania. They are interested developing Geant4 capability for Carbon medical beams.

Conclusion for CHIPS quasi-elastic

- Total & elastic hN cross-sections are updated
- Calculation and approximation of $R = \sigma_{QF}/\sigma_{IN}$
- G4QuasiFreeRatios class provides a pair of $(\sigma_{QF}/\sigma_{IN}, \, \sigma_{QE}/\sigma_{QF})$ for inelastic processes
- Scattering on quasi-free clusters is possible
- G4QuasiFreeRatios is used in G4QCollision
- G4QuasiFreeRatios is used in QGS/FTF. It improves the longitudinal Shower Shape.

Outline of Ion/ion talk

- Current Capability of Geant4 for Heavy lons interactions
 - G4BinaryLightIonReaction
 - G4WilsonAbrasionModel
- New Model based on QMD
- DPMJET-2.5 Interface
- Summary

G4QMDReactionModel

Mean

Field

Calculator

Ground State Generator

Collision and Decay handler

Statistic Decay of Excited Nucleus

Summary

- QMD based heavy ions interaction model is under development
- Mean field calculator, ground state nucleus generator and elemental collision channels are already developed and under testing.
- DPMJET-2.5 Interface is also developing which can treats nuclear-nuclear interactions from 5GeV/nuc to the order of 1000TeV/nuc.

Optical Elastic Differential Cross Section Model

Vladimir Grichine

e-mail: Vladimir.Grichine@cern.ch

Abstract

Differential elastic hadron-nucleus cross-sections are discussed in the framework of optical approach. The model predictions are compared with experimental data. The contribution of Coulomb scattering is discussed for charged hadrons.

 $\sigma_{el}^{cw}(0, 4 \ mrad) \sim \sigma_{el}^{cw} = 2.11854 \cdot 10^9 \text{ mb}$, with $\lambda = 0.143101 \text{ micron}$. $\sigma_{el}^{cw}(4 \ mrad, 40 \ mrad) = 919.547 \text{ mb}$, with $\lambda = 329689 \text{ micron}$ (33 cm).

Re-Parameterized Gheisha Model

- Proposed as a replacement for LEP
- Maintain basic LEP/Gheisha concept, but
 - correct all known problems of LEP
 - use the best, most up-to-date cross sections
 - improve the parameterizations
 - use mostly medium energy data instead of high energy data used in original Gheisha
 - streamline and objectify the code

Development Schedule

- Depends on number of people involved
- Tentative schedule for 2008 (for nucleons and pions)
 - development: present March 08
 - first comparison to data: March 08 June 08
 - tuning: June 08 October 08
 - first public release: December 08
- Kaons, hyperons, anti-particles will follow in 2009
 - draw on Bertini experience
 - attempt a correct description of oscillations
 - a better parameterized description of anti-nucleon interactions