Recent Validation and Developments for Geant4 Electromagnetic Physics

11<sup>th</sup> Geant4 Workshop, Hebden Bridge, UK, Sept.13-19 V.N. Ivanchenko, CERN, Geneva, Switzerland for Geant4 Electromagnetic Group

#### Outline

#### Recent upgrades for Geant4 standard EM

- EM physics and navigation
- Updates provided with g4 8.3
- Updates provided with g4 9.0
- Recent validation results for standard EM
  - Electron transport
  - Heavy particle transport
  - Calorimeter response
- Future plans for standard EM

Recent progress and plans for Low-energy EM

- Talk L. Pandola (Thursday plenary)
- Talk S. Inserti (Thursday parallel)

# EM physics and Geant4 navigation

- Geant4 7.1p01 have been used in production for ATLAS, CMS, LHCb and other experiments
- Since then multiples scattering models was significantly upgraded
  - reduced dependence of detector response on production cuts for sampling calorimeters
- Sub-cutoff option restored simulation with lower cuts in vicinity of geometry boundary
- Upgrades require access to geometry information from physics model to get
  - safety radius
  - distance to the next boundary

Redesign of interfaces to navigator/transportation

# Updates provided with Geant4 8.3

- **G4SafetyHelper** was introduced
- Single Coulomb scattering mode near geometry boundaries inside G4UrbanMscModel
  - do not use for simulation with strong magnetic field
- Multiple scattering angular distribution improved
  - both central part and tail
- G4hMultipleScattering process for heavy particles
  - the same model with options for faster computations
- Updated model for energy loss fluctuations
- EM (standard) working group page:

http://cern.ch/geant4/collaboration/working\_groups/electromagnetic/index.shtml

#### Sampling of fluctuations in Geant4 8.3 L. Urban



- We cannot use Landau distribution which assumes no δ-rays production
  - Model of fluctuations is cut and material dependent (L.Urban, NIM A362(1995) 416)
- The model was improved for small steps or gas

# Updates provided with Geant4 9.0

#### Updated G4SafetyHelper

- multiple scattering model
- sampling of sub-cutoff option
- Provided alternative to continues multiple scattering G4CoulombScattering process
  - pure single scattering
- Optimized general interfaces for EM processes to be more fast (about 10%)

#### Infrastructure updated

- Renamed Physics Lists optional builders
- Renamed EM standard components in examples
- Renamed methods of G4EmProcessOptions
- New UI commands
- Removed 52-type processes

### Multiple scattering options with g4 9.0

#### G4MscStepLimitType

- Minimal equivalent to the algorithm of Geant4 7.1 and earlier releases (QGSP\_EMV Physics Lists)
- UseSafety the current default, uses geometrical safety (QGSP and QGSP\_EMX Physics Lists)

OGSP\_EMX includes sub-cutoff option

 UseDistanceToBoundary - the most advanced, recommended for accurate computations in the cases, where no magnetic field is set

also option is recommended: skin = 2

Multiple scattering options configurable via UI

## Standard EM Physics Lists with g4 9.0

| Physics<br>Lists | Builders                    | Names in UI of examples |
|------------------|-----------------------------|-------------------------|
| QGSP             | G4EmStandardPhysics         | emstandard              |
| QGSP_EMV         | G4EmStandardPhysics_option1 | emstandard_opt1         |
| QGSP_EMX         | G4EmStandardPhysics_option2 | emstandard_opt2         |
| examples         | l                           | standard                |
| examples         | _                           | standardSS              |
| examples         | -                           | standardIG              |

If reference Physics Lists are used – nothing needs to be changed Validation of MeV electron transport using Standard EM packages

Motivation: A significant part of LHC calorimeter response due to e<sup>-</sup> with energy below 1 MeV

#### Fano Cavity test of e<sup>-</sup> transport S. Elles, M. Maire

- I MeV gamma beam in water with cavity of water-gas
- The absolute prediction of the dose deposition inside the cavity
- Significant deviation for EMV Physics List (g4 7.1p01)



**EMV** 



#### Similar test versus other MC codes

(L. Ferrer et al., Cancer Biotherapy & Radiopharmaceutical, 22 (2007))

1,6 1,4 1,2 1 0,8 Berger DPKs Geant4 standard Geant4 Low Energy 0,6 Geant4 Penelope 0,4 0,2 0 0,2 0,4 0,6 0,8 1,2 1,4 -0,2

#### DPKs 1 MeV

#### Pb/Scintillator sampling calorimeter (NIM A262 (1987) 229; NIM A274 (1989) 134)



#### **Two configurations:**

- 5 mm Pb/5 mm Scintillator
- 10 mm Pb/ 2.5 mm Scintillator
- Default Geant4 (QGSP) within experimental uncertainty
  - At 50 GeV a special cut was applied for data analysis to reduce leakage

#### QGSP\_EMV version provides biased results

Less precise for small sampling fraction

# Validation on heavy particle transport using Standard EM packages



#### Proton and ion stopping in water (QBBC Physics List, g4 9.0)



A.Bagulya et al., 11th Geant4 workshop, Lisbon, 2006

- The data for medical proton and carbon-ion beams in water are well reproduced by the Standard package
- Binary Cascade is used for sampling of inelastic interactions
- QElastic model is used for sampling of elastic scattering

Geant4 EM Standard

# Geant4 simulation and data for signal in a vertex detector



# Updates available with g4 9.0ref01 August, 31

#### ■ Materials:

- NIST elements or materials and man-made elements or materials are completely separated
  - Allows to have an element with natural abundances and with user defined abundances in the same run
- **G4UrbanMscModel** tuning
- **G4CoulombScattering** added nuclear size effect
- New G4ionGasIonisation process for simulation of ion transport in low-density media
- Fixed G4mpllonisation
- New example: G4INSTALL/examples/extended/exoticphysics/monopole

# Standard EM group is working on

- **•** Further development of scattering models
  - Specialized model per particle type
  - Nuclear recoil
- Bremsstrahlung review
  - Hadron incident
  - Specialized models for different energy range
- Ionisation models tuning
  - PAI model shows a problem at SLC4
  - Ion ionisation tuning
- Saturation effects
  - Birks
- G4Cherenkov process
- Polarisation library extension
- X-ray emission (K-, L- shells)
- CPU performance optimization