Notes on the RPG (Re-Parameterized Gheisha) Model

Dennis Wright Geant4 Collaboration Meeting September 2007

Re-Parameterized Gheisha Model

- Proposed as a replacement for LEP
- Maintain basic LEP/Gheisha concept, but
 - correct all known problems of LEP
 - use the best, most up-to-date cross sections
 - improve the parameterizations
 - use mostly medium energy data instead of high energy data used in original Gheisha
 - streamline and objectify the code

The Need for Such a Model

- LEP model is clearly inadequate at low and intermediate energies
 - missing physics (Coulomb barrier, conservation, nuclear details)
 - although some validations (shower shapes) show good agreement with LEP, many unit tests do not
 - bugs, errors and fixes are building up
 - most fixes not implemented in order to avoid changing the parameterization of the model
- A new model would
 - cover all the particles and energies now covered by LEP
 - conform more to OO and Geant4 coding principles
 - allow us to take advantage of recent Geant4 improvements

Model Requirements

- Use more object-oriented style
 - still lots of Fortran-like constructs in LEP
- Maintain high speed of LEP
- Handle inelastic scattering from 0 to ~20 GeV
- Enable smooth merging with HEP, QGS, or FTF
- Use correct physics whenever possible, except when there is a large speed penalty
 - charge, 4-momentum conservation
 - relativistic kinematics

Progress So Far

- New rpg/ directory recently tagged
 - first development version now available
 - model names are G4RPGPiPlusInelastic, etc.
- G4ReactionDynamics (in LEP)
 - code for generating hadron momenta in collision including hadronization and resonance scattering
 - > 4000 lines of code
 - in RPG this is broken into several smaller units
- Implementation base classes used for the many methods common to all LEP models

Much Yet To Do (1)

- Replace KNO algorithm for multiplicity and particle type with partial cross section data (as in Bertini)
 - removes one level of parameterization
- Add Coulomb barrier
 - already done in test version of LEP
- Replace binding energy parameterization with Geant4 calculated values
- Reduce number of models
 - now: one LEP model for each particle type
 - plan: one model class for all pions, one for nucleons, etc.

Much Yet To Do (2)

- Replace GHEISHA-style boosts, etc. with CLHEP versions
- Implement correct quasi-elastic behavior
- Use G4Nucleus class to take care of proton and neutron counting, excitation energies, etc.
- Model tuning
 - the biggest job

Tuning the Model

- Use data sets at
 - 0.2-0.8, 1.5, 2.5, 4.0, 8.9, 10, 12.9, 15.0, 20.0 GeV
 - for incident π^+ , π^- , p, n and some K
- Use primarily double-differential invariant cross sections
- Specific features requiring tuning:
 - fragmentation code
 - resonance formation and decay
 - particle suppression codes
 - nuclear de-excitation

Development Schedule

- Depends on number of people involved
- Tentative schedule for 2008 (for nucleons and pions)
 - development: present March 08
 - first comparison to data: March 08 June 08
 - tuning: June 08 October 08
 - first public release: December 08
- Kaons, hyperons, anti-particles will follow in 2009
 - draw on Bertini experience
 - attempt a correct description of oscillations
 - a better parameterized description of anti-nucleon interactions