



# New Geant4.9.0 Models for Muon-Nuclear Interactions

Mikhail Kosov, 12th Geant4 Workshop (GB, Sept. 2007)



- Important use-cases of  $\mu$ -nuclear interactions
  - □ Background for Underground experiments
  - Muon Chambers in high energy physics (LHC)
- Energetic muon-nuclear interactions provide
  - Correlated background of muons and neutrons
  - □ Catastrophic energy loss of muons in μ-chambers
- G4QCollision and G4MuNuclearInteraction
  - □ CHIPS against  $\gamma = 50\%\pi^+ + 50\%\pi^-$  +QGS+Cascade
  - Nan's in G4MuNuclearInteraction at low energies

#### Development of CHIPS μ-nuclear

- CHIPS algorithm is published: **Eur.Phys.J. A14 (2002) 377** for electron-nuclear reactions and now for  $\mu$  and  $\tau$ -nuclear too
- Universal **G4QCollision** process is made for e,  $\mu$ ,  $\tau$ , and  $\gamma$ :
  - □ e-nuclear with G4QElectroNuclearCrossSection cross-sections
  - μ-nuclear with G4QMuonNuclearCrossSection cross-sections
  - τ-nuclear with G4QTauNuclearCrossSection cross-sections
  - ¬-nuclear with G4QPhotoNuclearCrossSection cross-sections
- G4QCollision CHIPS process can be used instead of
  - □ e: G4ElectronNuclearProcess/G4PositronNuclearProcess (wrappers)
  - μ: G4MuNuclearInteraction (the only old electro-nuclear process)
  - □ τ: \*\*\* **G4QCollision** is unique \*\*\*
  - $\square$   $\gamma$ : G4PhotoNuclearProcess (a wrapper for the original CHIPS model)
  - $\square$  ( $\nu,\mu$ ) reactions on nuclei: \*\*\* **G4QCollision** is unique \*\*\*
- Till now photo- and lepto-nuclear CHIPS processes are not used in any Recommended Physics List





#### A unique parameterization of photo-nuclear cross-sections (78 nuclei) Partovi64 Wyckoff65 KAERI LeviSandri89 △ Bezic69









#### p-dependence of $\mu$ -Nuclear: G4MuNuclearInteraction(o), G4QCollision(+)





p-dep of σ <ΔE >/A/E of μA: G4MuNuclearInteraction(o), G4QCollision(+)





p-dep of «p<sub>T</sub>»σ/A of μA: G4MuNuclearInteraction(o), G4QCollision(+)





### Intermediate conlusion for µ-nuclear

- G4MuNuclearInteraction process gave nan's for cross-sections below T = 1 GeV. Now just skips it.
- The same muon-nuclear reactions can be simulated by the CHIPS G4QCollision process, which uses all power of CHIPS photo-nuclear reactions:
  - ☐ It does not produce nan's & works from the threshold.
  - ☐ It doubles the deposited energy & the scattering angle.
  - ☐ It produces more neutrons and nuclear fragments.
  - $\square$  It is SU(3) symmetric and produces strange particles.

#### Neutrons from nuclear µ—capture at rest

- Since 60's there exists a problem of high energy neutrons in muon-capture reactions
- Maximum neutron energy in the  $\mu$ -(p,n) $\nu_{\mu}$  reaction is  $T_n = m_{\mu}^2/2(m_N + m_{\mu}) = 5.3$  MeV< $E_{split}$
- Absolute normalization of nuclear  $\mu$ -capture depends on a nuclear capture rate  $\Lambda_c$ =1/ $\tau_c$  [0.45(H<sub>2</sub>)÷12610(U) $\mu$ s<sup>-1</sup>] & on a decay rate  $\Lambda_d$
- As muons are bounded, the decay rate  $\Lambda_d$  is reduced by Huff factor (H):  $\Lambda_d$ =H/ $\tau_u$ =H·455  $\mu$ s<sup>-1</sup>
- For light nuclei:  $\Lambda_c << \Lambda_d$ , heavy nuclei:  $\Lambda_c >> \Lambda_d$

#### Parameterization of atomic coefficients

- The Huff factor (I.W. Huff, Ann.Phys. (N.Y.) 16 (1961) 288) was investigated in I.M. Blair et al., Proc.Phys.Soc. London 80 (1962) 938: H=1÷0.82(U)
- In CHIPS **H** is tabulated till <sup>19</sup>F and for Z>9 it is parameterized as a function of Z (only)
- Isotope variation of the nuclear capture rate can be estimated by a **Primakoff** formula:

$$\Lambda_{c}(A,Z) = C(Z) \cdot (1.-3.125 \cdot (A-Z)/2A)$$

■ In CHIPS  $\Lambda_c$  is tabulated till <sup>19</sup>F and for Z>9 it is parameterized as a function of Z (only)

CHIPS approximation of the Huff factor







#### Simulation of decay of bounded muon

The effective nuclear charge Z<sub>eff</sub> and the nuclear mass A can be used for simulation of the bounded muon decay:
Recently electron spectra
K shell
K shell
V<sub>e</sub>
V<sub>e</sub>
Were accurately calculated in

Atomic Data and Nuclear Data Tables, v.54 (1993) 165

- The electron spectrum can exceed a free  $m_{\mu}/2$  threshold, because the momentum can be transferred to the recoil nucleus.
- For simulation geant4/tests/test29 was used

recoil nucleus

#### Geant4 processes for muon capture

- The inherited from GEANT3 (FLUKA) process G4MuonMinusCaptureAtRest was substituted (in G4.8.0.) by a process with the same name
- The algorithm of this process is a pre-compound de-excitation after the  $\mu$ <sup>-</sup>( $p_{bound}$ ,  $n_{free}$ ) $\nu_{\mu}$  reaction
- An alternative process is a G4QCaptureAtRest process G4.9.0: M.Kosov, Eur.Phys.J. A33 (2007) 7
- It is based on the CHIPS de-excitation after ~96% of  $\mu^-(d,u)v_\mu$  and ~4% of  $\mu^- \to \bar{d} + u + v_\mu$  reactions
- Pictures: blue curves are old, red curves are new, dots are from the Nuclear Data Tables publication









### Spectra of nucleons in nuclear μ-capture

- In addition to classic E. Segre data for Ca (▲) (Experimental Nuclear Physics, N.-Y., Wiley,1953) and R.M. Sudelin, R.M. Edelstein measurements (Phys.Rev. C7 (1973) 1037) on Si, S, and Ca (\*) There are recent data for neutron spectra:
  - □ for <sup>16</sup>O (Nucl.Phys. A408 (1983) 573) <sup>16</sup>O( $\mu$ -, $\nu_{\mu}x$ n)
  - □ for <sup>165</sup>Ho (Phys. Lett., B137 (1984) 339) (■)
  - □ for O, Si, Ca, Pb (Nucl. Phys. A436 (1985) 717) (●)
  - ☐ for <sup>40</sup>Ca (Phys. Lett., B177 (1986) 21) (■)
- The only μ-nuclear (Ca, Y) spectra of protons are W.J.Cumming, Nuclear Muon Capture in Extreme Kinematics, Stanford University, Thesis (Ph.D), 1992 (ο)
- Spectra of d and t (Si): Sov.Phys.JETP,33(1971)11, Sov.J.Nucl.Phys,28(1978)297 (Si(d): o, ●, Si(t): ▲ )

#### CHIPS:G4QCaptureAtRest(test29,µ-Ca)



#### CHIPS:G4QCaptureAtRest(test29, μ-S)



## Conclusion for muon capture at rest

- A bug was found in electron spectra simulated by the G4MuonMinusCaptureAtRest class: electron is radiated in muon momentum direction
- The μ-(p<sub>bound</sub>, n<sub>free</sub>)ν<sub>μ</sub> capture is unrealistic. On hadron level the **PCAC** idea can be used: J.Bernabeu, T.E.O. Ericson, C.Jarlskog, Phys. Lett., 69B (1977) 161
- Pre-compound model cannot reproduce the difference between proton and neutron spectra
- CHIPS with 4% parameter for  $\mu^- \rightarrow d^+ \bar{u}^+ \nu_\mu$  decay fits both  $\mu^*$  decay and  $\mu$  nuclear capture