
Geant4 Binary Install and Geant4 Binary Install and
Configuration ToolsConfiguration Tools

Ben Morgan

Geant4 Collaboration Meeting
Hebden Bridge

17th September 2007

Binary Install Options

● Define binary install as:

– A simple 'one click/command' way for users to install a
precompiled version of Geant4.

● Simple idea, and leads to several issues

– What packaging tools to use?

– What to package?

– Where to install files?

– How to resolve dependencies on external packages?

System Packaging Tools

● Various flavours of OS supported.

– Linux, Windows.

● Each with own packaging system(s)

– Linux: rpm, deb (debs available)

– Windows: msi, others?

– Mac: dmg, fink (fink packages available).

● Emphasize that I have no experience in packaging
for Windows or Mac.

● For now, concentrate on rpm on Linux issues.

What to package?
● Global shared libraries only.

– Is there a need for granular and/or static libs?

● Header files in single directory.

– Needed for development.

– Single directory provides best structure.

● Build system files for development.

– All gmk files plus env.(c)sh scripts.

● Data files as separate packages.

– Main package then has dependencies on versions.

● What about environments packages (g4py etc)?

Where to package?

● Should we follow the filesystem hierarchy?

– Libraries in /usr/lib (/usr/lib/geant4/Linux-g++?)

– Headers in /usr/include/geant4

– Configuration files in /usr/share/geant4/config

– Data files in /usr/share/geant4/data/<name>

● Alternatively, put everything under /opt:
– /opt/geant4/<version?>/lib

– etc...

● Later option useful if we want to support
install of multiple versions.

Dependencies

● Full Geant4 build and install depends on:

– CLHEP(*), X11, OpenGL, Xm, Xaw, Inventor

● So a full binary install would require these on the
user system.

● RPM is designed to handle that, but

– Not all systems would have, or want, everything.

● One idea:

– Try and package visualization drivers separately.

– Packages geant4, geant4-xm, geant4-xaw etc.

– May need to watch interlibrary dependencies...

Binary Install Planning

● A basic rpm for CLHEP is now available.

– Needs final choice of location (/opt or /usr).

– Final testing.

– Geant4 plans for CLHEP?

● Sabar Salih at Manchester has an rpm for Geant4

– Investigate use of this.

– Use or adapt as neccesary

● Should discuss requirement for binary install
further.

Configuration Tools
● Current system based on metaconfig.

● Configure script runs and sets up needed
variables in shell scripts.

● Generated shell scripts used to run make:
– install.sh

– move.sh

● User interaction via 'question and answer'
interface.

● Command line interface also available.

● Works well! But...

Metaconfig Issues
● Uses a modular system for defining options (good)

– Basic units raw shell scripts.

– Just defining one option can require >200 lines of script.

● Metaconfig is an old system – very little
documentation and few (if any) examples.

● Automatic configuration of include/library paths is
a little awkward.

● If a test, e.g. for CLHEP, fails, will ask user for
input rather than exit with failure.

A Better System?

● Primary requirements?

– Ease of use for both users and developers?

– Ease of maintenance/extendability?

● Distinguish configure and build processes.

● Gnu Autotools provides:

– autoconf for configuration

– automake for build

– libtool for library builds

● One possibility – autoconf for configuration of
existing Geant4 build system.

Why Autoconf?

● Structure much like metaconfig

– Top level configure.ac script.

– If required, project specific set of m4 macros.

● What would you gain?

– Huge amount of documentation/examples.

– Simple coding for most configuration tests.

– Easy to test external software functionality.

– All options easily documented.

– Easy variable export to scripts/Makefiles.

– In principle better cross-platform support.

– If required, easy integration of automake, libtool.

Planning for Configuration System

● Continue support for metaconfig system.

– Bug fixes as needed.

– Improve default options (easier user install).

– Add critical extensions as needed.

● Continue development of autoconf front end?

– Basic library options working.

– Work on visualization options started.

– Estimate 3-6months work required to get to beta.

Other Options

● Scons is a relatively recent python based build
system.

● Doesn't yet implement configuration tasks.

● Also, whole build, not just configuration, would
have to use it.

● Nevertheless, something to keep an eye on.

Other Configuration Ideas

● A few (personal) speculative and much longer term
ideas.

● Classical autoconf examples generate 'config.h'

– #define s variables for optional parts of software.

– Might be cleaner than environment variables (-D)?

● Use '.geant4rc' file to control runtime options.

– Could be read and parsed by application/kernel.

– Might be an easier point of contact for core and system
than environment variables?

– Can also have per process files.

