Python Interface, Geant4 Education, and Geant4 on Web

Koichi Murakami (KEK/CRC)

Geant4 Python Interface

- interactivity
- flexible application configuration

Geant 4

Geant(P)

C++ class library

•scripting environment

Python software bus

geometry

primaries

physics process

analysis

User codes

Python Interface, Geant4 Education and on Web

■ Geant4 Python Interface

- ✓ flexibility to configure user applications
- ✓ scripting environment

■ Geant4 Education

- ✓ Hajime kicked off the project.
- ✓ several workshops, to collect user requirements.
- ✓ some prototype examples
- ✓ how to merge and distribute?

■ Geant4 on Web

✓ Web 2.0 (rich client on Web) is a new possibility of Geant4 interface.

Example of Virtual Lab

Measurement of mass attenuation coefficient

- 1.198 MeV gammas entering 3.004 cm of water
- 40 events are displayed to "measure" the probability of the through gammas
- All EM interactions are activated

Example of Virtual Lab

EM cascade in sandwich calorimeter

Example of Virtual Lab

Sandwich calorimeter (process switch on/off)

Koichi Murakami

TestEm0 with Tcl/TK

■ Jean created a new example based on TestEm0.

Experiences at Michel's course

- Visualization is a key element for observation of physical phenomena by students.
 - ✓ Trajectories and geometries
- Simple geometry like a water box are useful to "measure" physical quantities like the mass attenuation coefficient, etc...
- Simple measurement like Rutherford don't need advanced analysis tools. Intuitive "measurement" is effective.
- Analysis tools will be necessary to study quantitative features
- How to manage contents and distribute as coursewares?

Web application is one of the best solution.

Possibilities of Geant4 on Web

- Course-ware on Web
 - ✓ Geant4 Education
 - Not to teach Geant4 but use Geant4 to teach Physics
 - for HEP experiment, radiological physics and dosimetry,...
 - hyper document with textbook and hands-on work
- G4 examples on Web with user manual
 - √ hyper experience with G4 for instant users
- Exposure inside G4
 - ✓ particle, material, cross section, etc.
 - ✓ framework of presenting physics validation results
- Geant4 simulation server
 - ✓ medical applications
 - ✓ radiation background study
- And more?

Inside Geant4 on Web

- Run Geant4 as web service
 - √ independent of client environment
 - ✓ Python web application framework
 - TurboGears / Pylons
 - MVC (Model/View/Control) model

- MVC model
- Geant 4

- ✓ Model: Geant4 / Python-interface / document management
- ✓ View: HTML template (Kids/Genshi/Mako) / XHTML+CSS
- ✓ Control: URL mapping of Python functions
 - CherryPy, route CherryPy
- Rich client
 - ✓ Ajax (Javascript) powered ext
 - Ext

- Multi-users access and scalability
 - ✓ Deployment of web servers

Snapshots from prototype

Wish Items

- Off-line visualization
 - ✓ VRML file and HepRep file are currently available.
- We want a drawing engine to directly generate jpeg/png/gif files.
 - **✓** DAWN
 - Tcl/Tk GUI frontend (currently)
 - command-line interface (wish)
 - can convert PS to jpeg by "convert" command.
 - ✓ OpenGL
 - offline interface, directly generate a jpeg file without drawing (wish)
 - possible?