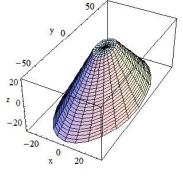
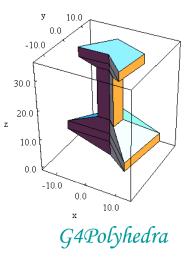

Geant4 workshop, Hebden Bridge 13-19 september 2007




Geometry and Field: New features and Developments

T. Nikitina For Geometry Working Group

G4EllipticalCone

Summary

Geometry

- Overview of New features in Geometry
- Future planes

Geometry/ Magnetic Field

- Improvements in LocateIntersectionPoint()
- New Steppers : RKG3_Stepper and HelixMixedStepper
- Steppers in non-homogeneous Field (Gradient Field , ATLAS Toroid Field)
- Conclusions and future plans

Parallel Geometries & Navigation

since 4.8.2, default for biasing in 4.9

- Possibility to define geometry trees which are "parallel" and overlapping to the tracking geometry
 - Each assigned to a dedicated navigator object
 - Navigation transparently happens in sync with the normal tracking (mass) geometry
 - Applies transparently to transport in magnetic field
- Use cases: fast shower parameterisation, geometrical biasing, particle scoring, readout geometries, etc ...
- Parallel transportation activated only after registration of the parallel geometry in the setup

Tunable geometrical tolerance since 4.9

- Cartesian tolerance (kCarTolerance) value for accuracy of tracking on the surfaces can be defined *relative* to the extent of the world volume
 - G4GeometryManager::GetInstance()
 - ->SetWorldMaximumExtent(WorldExtent);
 - Call must be done before defining any geometrical component and can be done only once
- An absolute small value (10E-9 mm) of accuracy may be redundant and inefficient for use on simulation of detectors of big size or macroscopic dimensions
- G4GeometryTolerance class holds the values for: kCarTolerance, KRadTolerance and kAngTolerance

Checking overlaps at construction

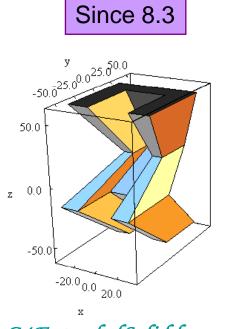
- "Overlaps" in the geometry can be detected at volume positioning stage
 - Boolean flag to be activated in the physical-volume constructor
 - Valid for placements and parameterised volumes
 - With explicit call to *CheckOverlaps()* through the pointer of the physical-volume
- Resolution of the check can be tuned
 - 1000 points generated on each solid surface by default
 - Positioning of each point is checked against volumes already positioned
 - Points detected *inside* existing positioned volumes at same level are flagged as overlap
 - Points detected *outside* current mother volume are flagged as overlap
 - Points of other volumes at the same level detected *inside* the volume being positioned are detected as overlap
- By default, precision of overlaps determined by the surface tolerance
 - Surface tolerances can be computed relative to the geometry topology
 - Optional: a custom tolerance for the check can be specified

Feature extended since the first version released in Geant4 8.0

Error propagation module Geant4e since 4.9

Integration of Geant4e, error propagation module for Track Reconstruction by Pedro Arce (CIEMAT)

- Details in Pedro's talks at Geant4 Workshop (Saturday) and at CHEP06 :

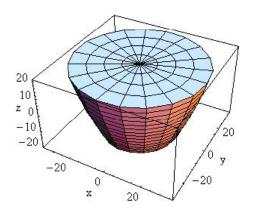

http://indico.cern.ch/contributionDisplay.py?contribId=85&sessionId3&confId=048

- New Classes added in Geometry/Tracking and Navigation Magnetic field : G4ErrorMag_UsualEdRhs Management : G4ErrorTarget, G4ErrorSurfaceTarget, G4ErrorTanPlaneTarget, G4ErrorPlaneSurfaceTarget G4ErrorCylSurfaceTarget Navigation : G4ErrorPropagationNavigator

Global : G4ErrorPropagatorData

- Examples/extended : errorpropagation

New solids : G4ExtrudedSolid and G4Paraboloid



G4ExtrudedSolid by Ivana Hrivnacova (IPN,Orsay,France)

G4ExtrudedSolid represents the extrusion

- Z direction of an arbitrary polygon
- For each Z section position with offset and scale factor is defined.
- The solid is implemented as a specification of G4TessellatedSolid

Scheduled for 4.9.1

G4Paraboloid by Lukas Lindroos (Summer Student)

G4Paraboloid is a full Paraboloid with possible cut in Z

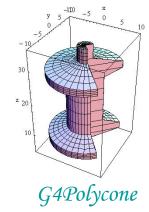
- Equation : $z = a^{r^2}+b$
- <u>On the picture</u>: G4Paraboloid(Name,dz,R1,R2) dZ = 20 and R1 = 20 (at z=-20)
 - R2 = 35 (at z=20)

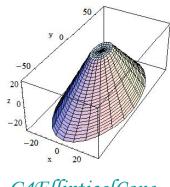
Fixes and improvements in Geometry

Solids

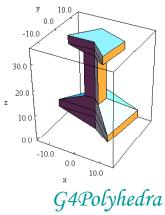
Revision of G4EllipticalCone : visualization, DistanceToIn(),

DistanceToOut(),tests


Fixes in G4Polycone, G4Polyhedra, G4Tubs and G4Cons, G4TwistedTrap


Overlaps Checking

CheckOverlaps() was improved for G4Polycone and G4Polyhedra Other Overlapping Facility : recursive_test was improved : Problem #784 closed: recursive_test causes a segmentation fault Recursive_test was improved for solids with opening in Phi

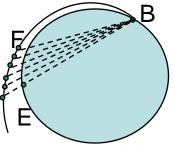

• Fixes in Geometry/Magnetic Field

Fix for NaN detected in G4MagIntegratorDriver (since 4.8.3)

G4EllipticalCone

In Progress

- G4Torus (NaN in CalculateExtend() reported by FNAL team)


To do

- Continue Test Suite for solids BREPS BREPS with Boolean operations
- Code review of solids CPU performance

G4PropagatorInField : Improved LocateIntersectionPoint()

Motivation: In ATLAS simulation rarely Intersection wasn't found after 10,000 trials and events were aborted

Examples of some 'difficult' cases for finding intersection: particle moving around Cylinder with almost the same Radius

Since 4.8.2 version :

Add to existing algorithm for Location of Intersection

- check on 'slow' progress in finding Intersection after 10 trials
- in case of to 'slow' progress add faster algorithm.

This algorithm consists in **recursive** division of the Full Chord in two **Good** improvement for **CPU performance** for 'difficult ' intersection: needs **5*times less** trials to find intersection

for particle moving around Cylinder with almost the same Radius In progress :

Others algorithms for intersection were tested:

- Second order Brent's method, method using SurfaceNormal()
- They are ready to be included

Steppers in Geant4

• Fix G4RKG3Stepper or Nystrom Stepper re-enabling use <u>since 4.8.3</u> Uses 3 calls to field (rather than 4 of G4ClassicalRK) per integration step

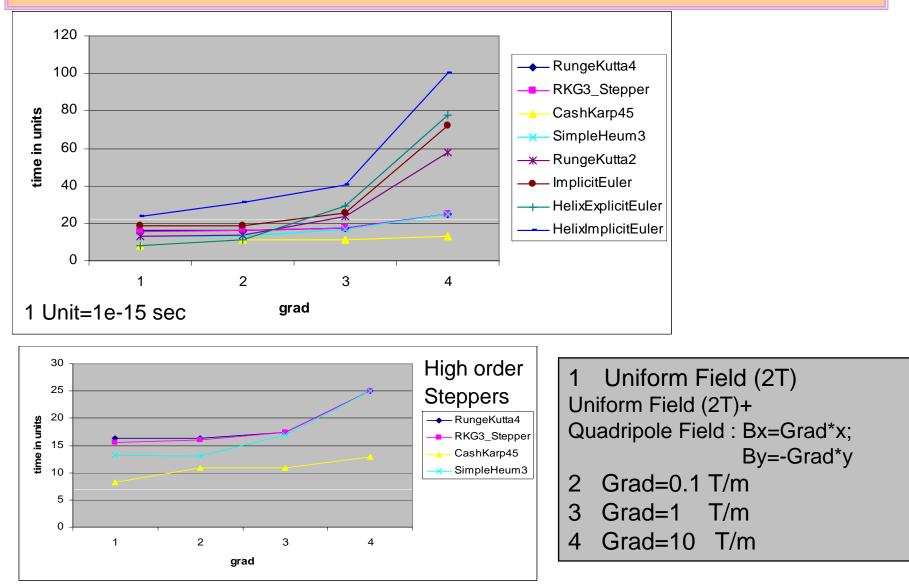
• Revision of Helical Steppers

- Improved calculation of DistChord() for Stepping Angle > π
- CPU performance : G4HelicalExplicitEuler made 25-30 % faster
- New class G4HelixMixedStepper is added since 4.9.0 version

For small steps uses G4ClassicalRK4(default Stepper) For long steps uses G4HelicalExplicitEuler Stepper Change of Stepper when Stepping Angle > 0.33 π (fixed value)

• Timing and accuracy in non-uniform fields

Table. Timing Steppers

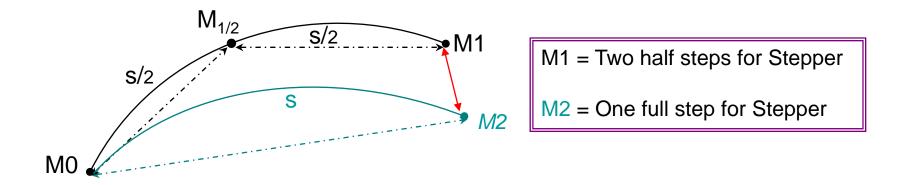

Stepper	Order	Time for One Step Unit=1e-15 sec	
RungeKutta4	4 th	4.58 units	
RKG3_Stepper	4 th	4.33	
CashKarp45	5 th	2.58	
SimpleHeum	3 th	3.16	
RungeKutta2	2 th	2.08	
ExactHelixStepper (revised)		1.58	
ExactHelixStepper (old)		1.7	
HelixExplicitEuler (revised)	1 th	2.7	
HelixExplcitEuler(old)	1 th	3.5	
HelixImplicitEuler	2 th	6.9	
ExplicitEuler	1 th	1.08	
ImplicitEuler	2 th	2.16	

Time for Accurate Advance 120 mm in Quadripole Field : Bx=Grad*x; By=-Grad*y Gradient=1 T/m , Epsilon=1e-5		
17.4 units		
17.4		
12.9		
17.0		
23.83		
Only Uniform Field		
Only Uniform Field		
28.92		
Old version		
40.66		
673		
25.7		

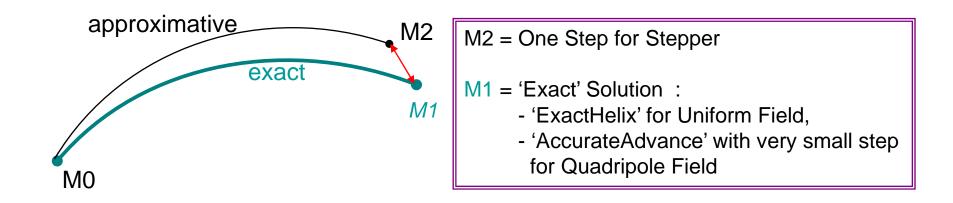
Low order steppers and CashKarp45 are faster **per step**

But high order steppers are more precise and need less steps per trajectory

Timing for AccurateAdvance in Uniform Field and in Quadripole Field

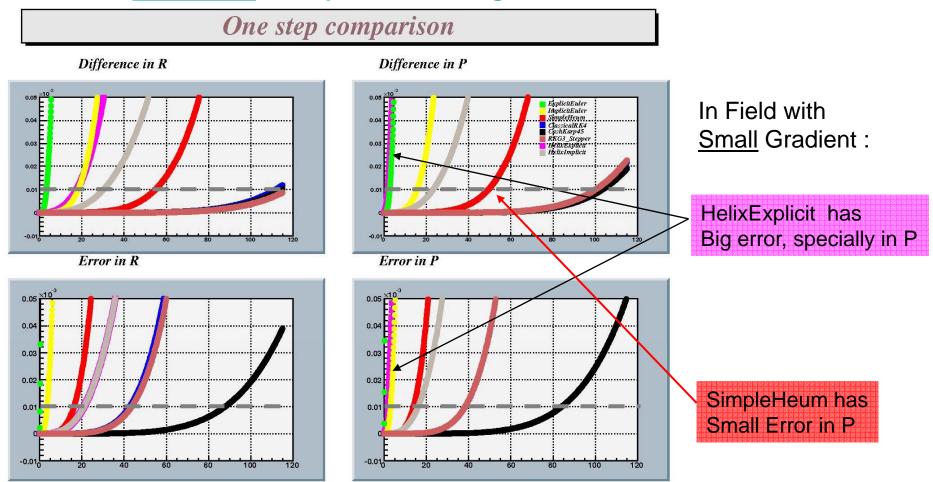

- CashKarp45 is the fastest

- In UniformField or in Fields with small gradient HelixExplicitEuler is fast


Accuracy for Steppers in Uniform Field and in Quadripole Field

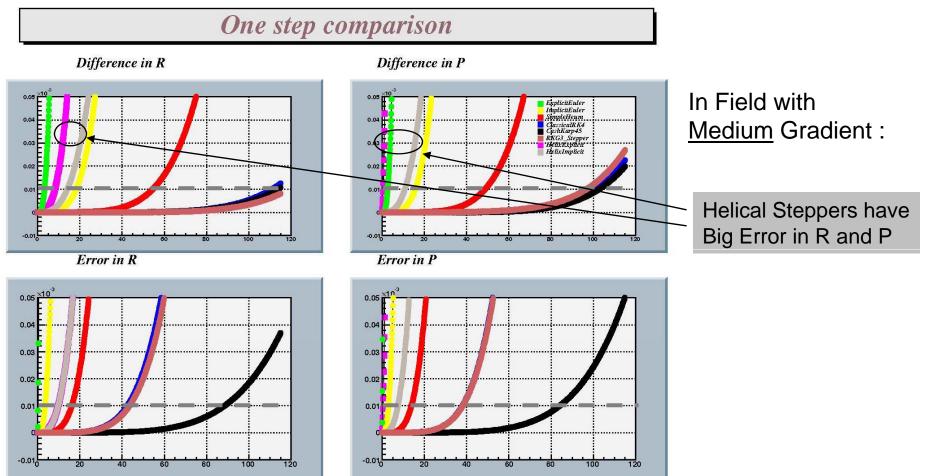
'Good' Stepper = large S , small error ($\Delta R, \Delta P$) Estimated Error/Actual Error < 1

Calculated Error ($\Delta R, \Delta P$) for One Step (R=Position, P=Momentum)

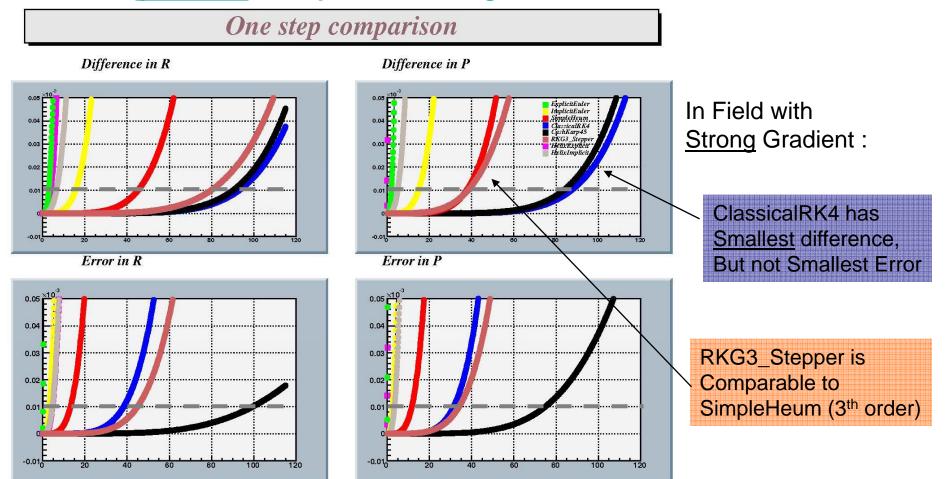


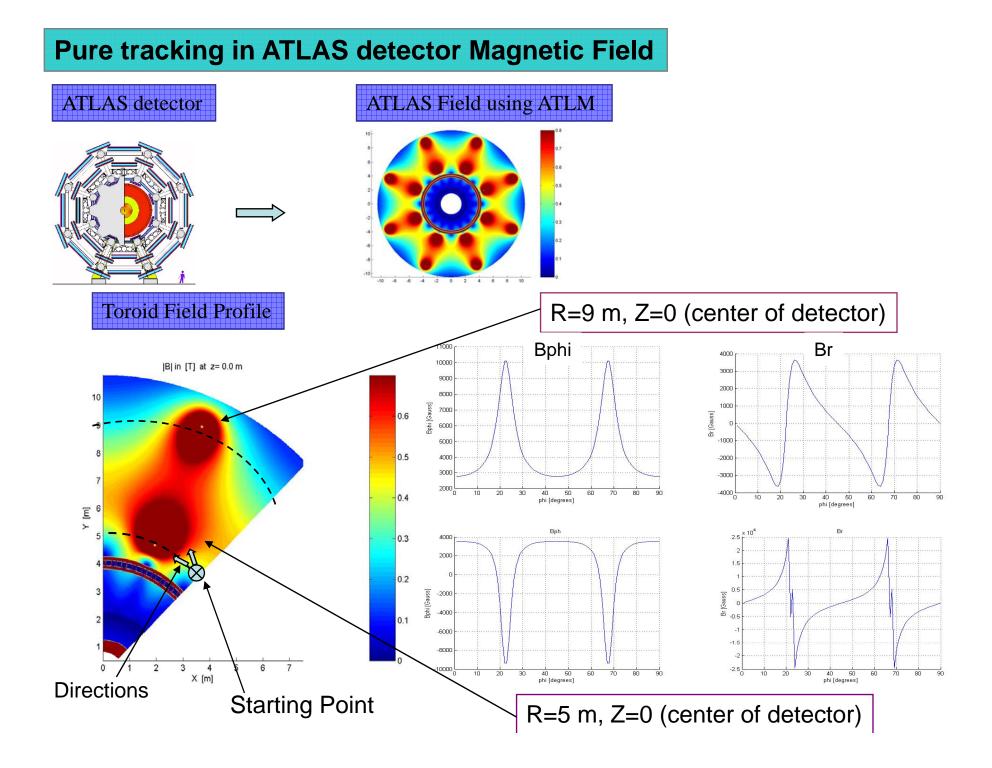
Difference in Position $\delta R = |R(M2) - R(M1)|$ and in Momentum $\delta P = |P(M2) - P(M1)|$ for One Step

How long can be One Step ?


Example 1 : UniformField (2T) + QuadripoleField : Bx=grad*x,By=-grad*y Grad = 0.1 T/m , particle starting with Radius=0.4511 m

The error, calculated by Steppers, is an Over Estimation (it has to be)


How long can be One Step ?


Example 2 : UniformField (2T) + QuadripoleField : Bx=grad*x,By=-grad*y grad = 1 T/m , particle starting with Radius=0.4511 m

How long can be One Step ?

Example 3 : UniformField (2T) + QuadripoleField : Bx=grad*x,By=-grad*y grad = 10 T/m , particle starting with Radius=0.4511 m

Example : Accuracy for muons in high non-homogeneous Field (Exact Calculation of Field for each call ;only tracking, no physics, epsilon=1.e-5)

Test consists to shoot the muons of different energy in direction of the Toroid coil. Store values of Maximum Field and Minimum Radius of projected Helix 'seen' by muons

Stepper	Energy 0.1 GeV	Energy 1 GeV	Energy 10 GeV
	70 m of track	13 m of track	11 m of track
	Bmax = 1.6 T	Bmax = 2.2 T	Bmax = 2.2 T
	Rmin = 0.2 m	Rmin= 0.24 m	Rmin = 0.8 m
CassicalRK4	0.003 mm	0.0002 mm	0.000018 mm
RKG3_Stepper	0.004 mm	0.0008 mm	0.00002 mm
CashKarpRK45	0.006 mm	0.0025 mm	0.00013 mm
SimpleHeum	0.009 mm	0.002 mm	0.00025 mm
SimpleRunge	0.02 mm	0.004 mm	0.0006 mm
HelixExplicitEuler	200 mm	9 mm	0.0043 mm
HelixImplicitEuler	7 mm	0.011 mm	0.00096 mm

- Helical Steppers are not precise in ATLAS field
- ClassicalRK4 has very good accuracy
- CashKarpRK45 and RKG3_Stepper are less precise that ClassicalRK4
- SimpleHeum can be a good alternative (fast and good error)

In progress : Tests with Geometry and not-Uniform Field

1)LarCalorimeter example with "Exact " ATLAS Solenoid Field or Toroid Field (not a Field Map)

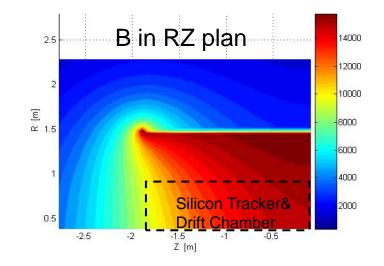
- For intersection studies and accuracy

First Test : Accuracy of propagation

Shooting muons (Different Energies, Different Angles)

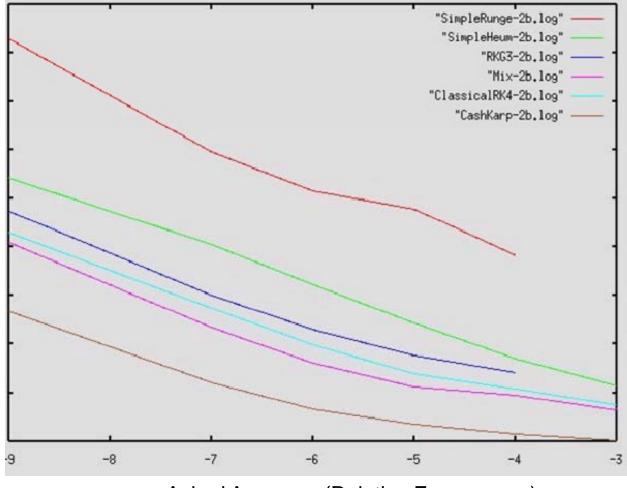
Parameters of Propagation as in ATLAS

(DeltaIntersection=0.00001 mm, DeltaOneStep=0.0001 mm,


MaxEpsilon=0.001, MinEpsilon=0.00001)

Difference between full and empty geometry in order of 1.e-5 mm for 3 m of track

2)NTST test with Uniform, Quadripole Field and "Tabulated" Solenoid Field


- -BaBar Silicon Tracker and 40 layer Drift Chamber -B-Bbar events
 - -For CPU benchmarks and accuracy
 - -For Testing Steppers

Semi Analytic formula for BaBar <u>Solenoid</u>: 1.5 T, Rext=1.5 m, Z half= 1.9 m

Some first results

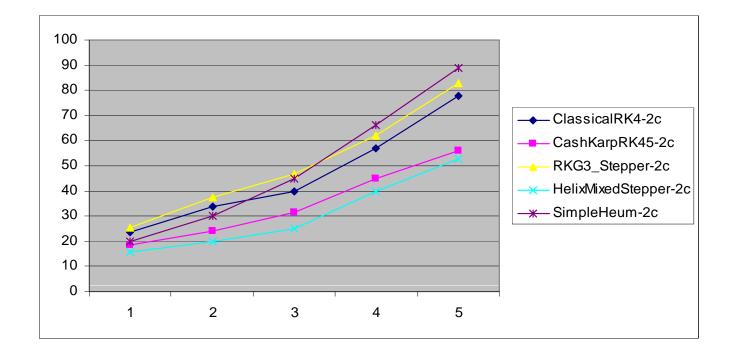
Time for different steppers in Uniform Field run-2b.mac= 1000 events, cutEmin=1 MeV

Asked Accuracy (Relative Error, power)

Conclusions

-The error, calculated by stepper, is an Over Estimation(good)
-SimpleHeum has small error in momentum
-In Fields with small gradients Helical Steppers are faster but can be not precise
-In Fields with strong gradients Better to use ClassicalRK4
CashKarpRK45 and RKG3_Stepper are less precise

In Progress


Tests with NTST test and LarCalorimeter example

<u>To do</u>

- New test case with full detector geometry, CMS GDML, and non-uniform Field
- New stepper depending on field variations by region
- Review of tracking parameters (user gives desired accuracy, algorithm decides Stepper and his parameters)
- Field map study and construction of efficient Field map (not just linear interpolation)
- Would be very instructive to make some tests with ATLAS realistic geometry and realistic field (ATLM is included in ATHENA already)

More results for NTST test with Gradient Field

Time per event for different steppers in Uniform +Gradient Field run-2c.mac= 1000 events, no Energy Cut by NTST as for run-2b.mac

Gradients: 0.005,0.01,0.05 and 0.1 T/m