
A Summary of Physics Validations and Developments: Hadronic

Dennis Wright Geant4 Collaboration Meeting Hebden Bridge, UK 13 September 2007

Outline

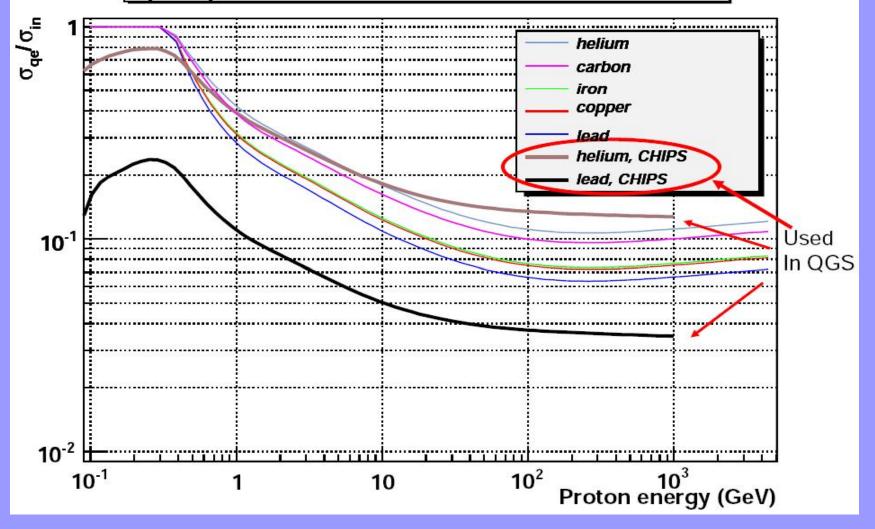
- Recent Hadronic Model Improvements and Their Effects on Shower Shapes
- Validation web sites and Recent Results
- Neutron Notes
- Two Important Bug Fixes
- New Hadronic Models
- Precompound Workshop Summary

CMS Test Beam Shower Shapes

What Was the Cause of the "Short Showers" ?

- For 1.5 years, hadronics group looked at:
 - cross sections
 - pion fraction in hadronic shower
 - longitudinal fragmentation in quark-string models
 - quasi-elastic scattering
 - Birk's law in scintillators
- Work is still going on, but major progress was made
 - most important effect: treatment of quasi-elastic scattering
 - other effects:
 - pion-Cu cross section was corrected (no longer 4% low)
 - treatment of diffraction in quark-string models

New Quasi-elastic Channel


- The Quark-Gluon String (QGS) model handles the high energy part of the physics list interactions (E > 12 GeV)
- QGS models only the deep inelastic interactions
 - but the model cross sections include both quasi-elastic and deep inelastic
 - quasi-elastic is typically 4-8% of cross-section
- Treat quasi-elastic scattering by making it a separate channel which competes with deep inelastic

- fewer deep inelastic scatterings cause longer hadronic showers

- G4QuasiElasticChannel used starting from G4 8.3 in QGSP & variant Physics Lists (QGSP_EMV, QGSP_BERT, ...)
- Use of this channel is optional
 - new lists QGSP_NQE, QGSP_EMV_NQE, and QGSP_BERT_NQE ignore new quasi-elastic

G4QuasiElasticChannel uses G4QuasiFreeRatios (M. Kossov)

p-A quasi-elastic/inelastic cross-section ratio

6

Quark-String Models (QGS and FTF)

- Improvements to QGS model, but small effect on shower shapes
 - energy-momentum conservation bug fixed
 - improved fragmentation code
- Alternate model to QGS: FTF (Fritiof Fragmentation)
 - significant revisions by V. Uzhinski in 8.3 and 9.0
 - single diffraction added (double diffraction already there)
 - improvements made to longitudinal fragmentation code
 - tuning for proton- and pion-incident
 - can start as low as 4 GeV
 - result: showers are now longer than with QGS
 - FTF-based physics lists also use new quasi-elastic channel

Hadronic Shower Shapes

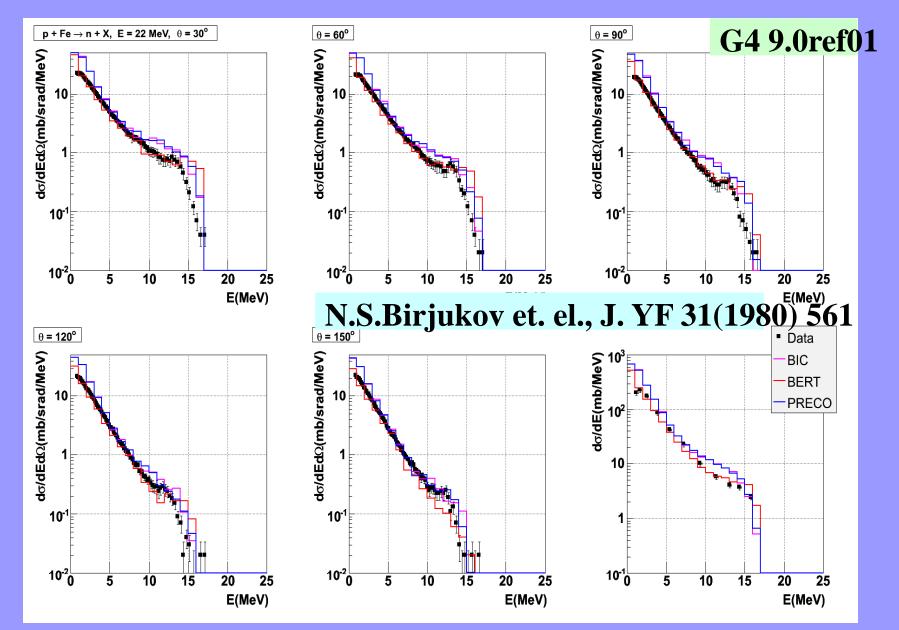
Considering a 100 GeV π -beam on a Iron-Scintillator sampling calorimeters (a kind of simplified version of the ATLAS TileCal calorimeter), we can look how the visible energy is distributed in four longitudinal quarters:

	G4 8.2.p01		<i>G</i> 4 9.0	
	QGSP	FTFP	QGSP	FTFP
f _{L1}	55.7%	56.5%	54.5%	52.2%
f _{L2}	33.6%	33.6%	34.0%	34.6%
f _{L3}	8.9%	8.2%	9.5%	10.6%
f _{L4}	1.8%	1.6%	2.0%	2.6%

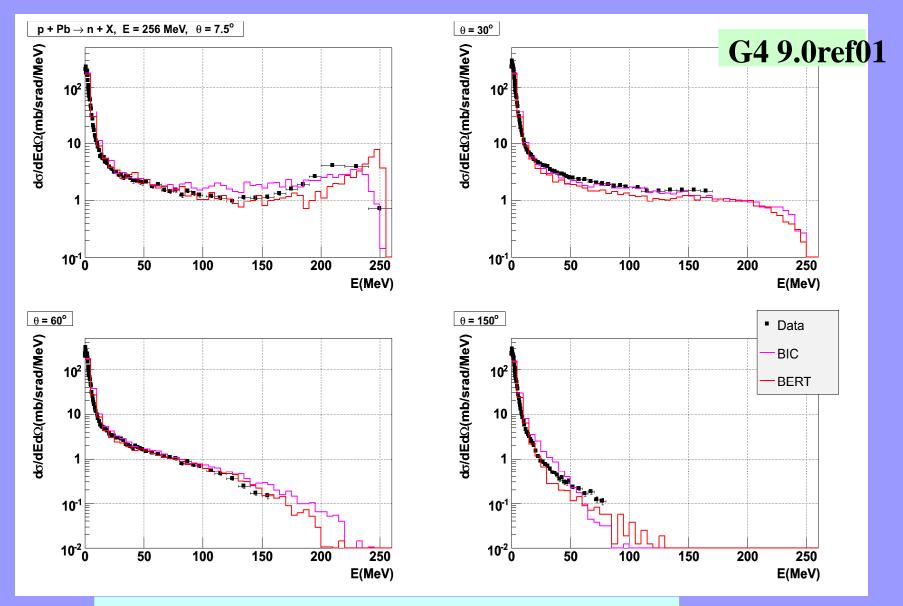
The longitudinal shower shapes are longer in G4 9.0 because of the quasi-elastic scattering. Furthermore, Fritiof model has been improved.

Validation Web Sites

- geant4.web.cern.ch/geant4/results/validation_plots
 - prototype validation web page for Geant4 hadronics
 - covers all energies, most models
 - thin target, thick target, test beam and benchmarks
 - link to data sets used or planned to be used in validation
 - still incomplete, but growing
 - larger, better website now being designed at FNAL
- vnivanch.web.cern.ch/vnivanch/tests.shtml
 - both EM and hadronic validations
 - hadronic part covers test30, test35
 - covers precompound and cascade models

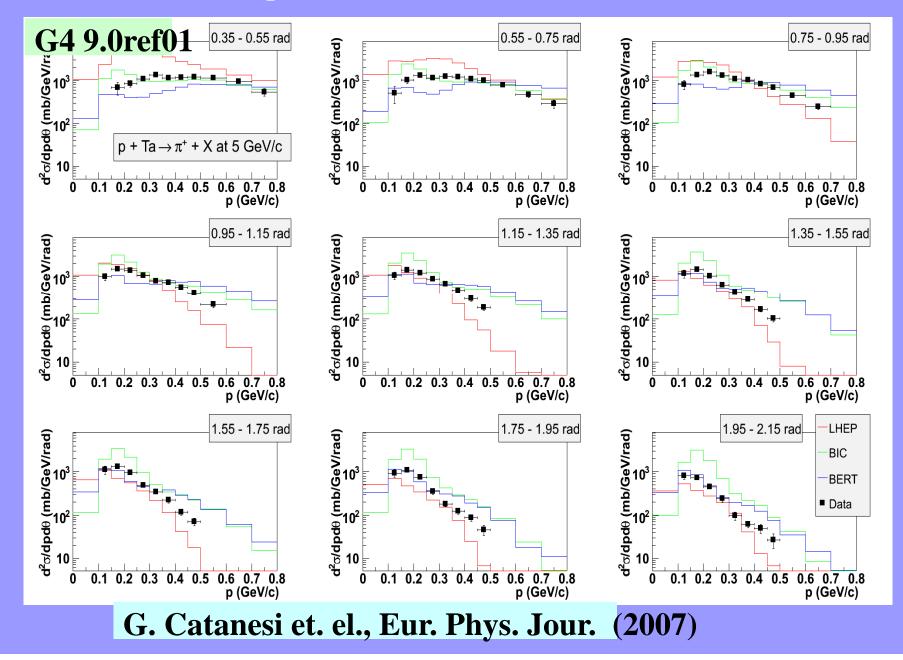

Validation suite for thin target data on hadron inelastic interaction

- Exist since 2002
- Neutron production by p, d, α, ¹²C with E <= 3 GeV
 - p + A -> n + X
 - d + A -> n + X
 - α + A -> n + X
 - ¹²C + A -> n + X
- Pion production by protons and pions P<13 GeV/c
 - P + A -> π[±] + X
- More 100 thin target setups
- Data versus Geant4 models
- Control on differential spectra
- Model level test


- Models under testing:
 - PreCompound
 - Binary Cascade
 - Binary lon cascade
 - Bertini Cascade
 - Wilson-Abrasion model
 - LHEP
 - QGSP
 - QGSC
 - FTFP
- A new model can be easily included
- About 1000 comparison plots produced

V.Ivanchenko et al., CHEP'07, Victoria, Canada, Sept. 2-7, 2007

$p + Fe \rightarrow n + X at 22 MeV$

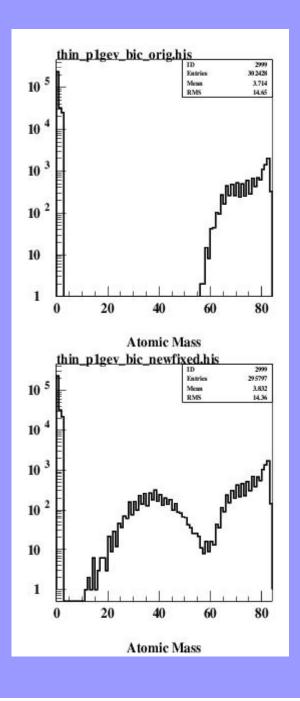


p + Pb -> n + X at 256 MeV

M.M. Meier et. el., J. Nucl. Sci. Eng. 110 (1992) 289

 $p + Ta -> \pi^+ + X$ at 5 GeV/c

Precision Neutrons (1)


- When using high precision neutron code, user may now change the behavior of the high precision neutron module
 - force use of Photon Evaporation model for neutron capture instead of final state data:
 - set G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION
 - use only exact isotope data files
 - instead of allowing nearby isotope files to be used (the default)
 - if the exact file is not available, the cross section will be set to zero and a warning message will be printed.
 - set the environment variable G4NEUTRONHP_SKIP_MISSING_ISOTOPES.
- Note: renamed NeutronHPCrossSections to G4NEUTRONHPDATA
 - sets the path for the G4NDL data set
 - must change this user environment variable

Precision Neutrons (2)

- New data for neutron cross-sections, G4NDL.3.11
 - added Germanium data and Silver data
 - added special file 0_0_Zero which gives 0 cross section at all energies

Fixes (1)

- LEP model: correction in units
 - removes unphysical peak at 180 degrees and reduces the number of very low energy nucleons produced.
 - Typical effects for 2 10 GeV incident particles:
 - shift angular distributions forward by ~ 5-10 degrees
 - increases mean secondary KE by 20 30 MeV
 - at higher energies the effect is small
 - little change in shower shape benchmarks

Fixes (2)

- Evaporation and fission models:
 - compete for A > 65
 - probability for fission was negative
 - now in agreement with formula in Physics Reference Manual
- Above models invoked by G4PreCompound model, so that model is affected also
- Additional protections against negative channel probabilities implemented

New Models

- Just released
 - LLNL Fission model
 - improved CHIPS-based muon capture process
 - G4UHadronElasticProcess and G4HadronElastic
- Soon to be released (December)
 - Liege cascade (for p, n up to ~3 GeV)
 - ABLA
- Further down the road (June or December 08)
 - QMD-based ion-ion model
 - alternate precision neutron code (based on LLNL database)
 - medium energy parameterized interaction model

Precompound/Evaporation Workshop

- Workshop held in July to evaluate the many precompound, de-excitation and evaporation models in Geant4
- Motivation:
 - these models (0 < E < 170 MeV) are important for many user communities
- Outcomes
 - common interface for precompound models to be designed
 - theoretical basis and implementation of G4PreCompound was re-examined – several problems fixed and improvements made
 - standard framework for de-excitation sub-models to be designed

More Hadronic Physics to Come

- Saturday morning plenary session:
 - using CHIPS models (M. Kosov)
 - new developments in cross sections (V. Grichine)
- Saturday afternoon tutorial:
 - introduction to Geant4 hadronics
 - low background physics lists