CALICE Report

Nigel Watson
(Birmingham Univ.)

- Motivation
- ·Test beam programme
- ·Current results
- ·Summary

For the CALICE Collaboration

[Particular thanks to Erika Garutti, Fabrizio Salvatore, David Ward]

ILC: high performance calorimetry

■ Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of vvW+W-, vvZ⁰Z⁰, tth, Zhh, vvH

Implications, e.g. for ECAL design

- Shower containment in ECAL, ΣX_0 large
- \blacksquare Small R_{moliere} and X₀ compact and narrow showers
- λ_{int}/X_0 large, Δ_{int}/X_0 large, Δ_{int}
- ECAL, HCAL inside coil
 - ▶ Lateral separation of neutral/charged particles/'particle flow'
- Strong B field to suppresses large beam-related background in detector
 - Compact ECAL (cost of coil)
- Tungsten passive absorber
- Silicon pixel readout, minimal interlayer gaps, stability
- ...but expensive...
- Also considering "Swap-in" alternatives to Si diode detector designs, e.g. in LDC, SiD
- CMOS MAPS process? Scintillators?

CALICE: from MC to reality

CAlorimeter for the Linear Collider Experiment

Final goal:

A high granularity calorimeter optimised for the Particle Flow measurement of multi-jets final state at the International Linear Collider

Build prototype calorimeters to

- Establish the technology
- Collect hadronic showers data with unprecedented granularity to
 - tune reconstruction algorithms
 - validate existing MC models

Test beam prototypes

10 GeV pion shower @ CERN test beam

beam

 $3x3cm^2$ tiles lateral segmentation $\sim 4.5 \lambda$ in 38 layers

 5×100 cm² strips ~5 λ in 16 layer

64 Workshop, 13-Sep-2007

The 2006 CERN installation

Event display

REAL DATA!

Clear structure visible in hadronic shower Nigel Watson / Birmingham Back-scattered particle G4 Workshop, 13-Sep-2007

Event display

REAL DATA!

Beamline instrumentation modelling

2006 Data

	e^+	e^{-}	π^+	π^-
	(kEvt)	(kEvt)	(kEvt)	(kEvt)
6 GeV	208	128	480	1800
$8 \; \mathrm{GeV}$		218		1800
$10 \mathrm{GeV}$	152	172	960	1800
12 GeV		211		1600
15 GeV	476	124	720	1600
16 GeV	310			1700
$18 \mathrm{GeV}$	303	231	770	1600
20 GeV	390	210	3300	
30 GeV	409		1400	
50 GeV	305		1500	
80 GeV			1800	

Combined ECAL+HCAL+TCMT data samples from CERN

Samples for less than whole system also analysed

Preliminary results for ECAL and AHCAL Concentrate on electromagnetic response

- ·ECAL, AHCAL for electrons
- ·AHCAL for charged pions

ECAL hit energy, 30 GeV e-

Low energy excess (below MIP peak) not 100% understood Minor effect on total energy

Geant 4.8.1.p01

ECAL linearity/resolution

ECAL longitudinal profile

Expected logarithmic behaviour of shower max., and angular dependence

AHCAL

- Hadronic showers intrinsically more interesting than electromagnetic
 - More challenge to model and build detector
- Proper understanding of electromagnetic showers (e-, μ -) mandatory first step, prior to hadronic studies
 - Performance monitoring, multi-stage calibration,
 - ▶ Unlike ECAL, do need digitisation simulation for meaningful comparison of data/MC
- Olipration is much more complicated than Si-W ECAL.
 - Muons for MIP calibration; equalise response, zero suppression
 - SiPM non-linearity corrections. Lab calibration and LED light injection
 - ▶ Temperature sensitivity: $1C \rightarrow 3\%$ systematic uncertainty
- 96.3% of channels calibrated, ~50% of remaining few % are dead
- Show August 2006 data 15 planes (=29 X_0) contains e.m. shower
- Complications: MC digitisation scheme required to compare MC with data
 - Cross talk; non-linearity + Poisson statistics at pixel level; noise; dead channel removal
- Selection of results to follow

AHCAL response to e-

AHCAL linearity for e-

AHCAL π data

AHCAL contained events

Veto on TCMT activity

π linearity and resolution

- Resolution ~ compatible with (Geant3)
 MC models
- Not yet comparison with 64 v8/9...
- Coming soon...

AHCAL energy profiles

Outlook

- Complete understanding of 2007 data
 - In process of adding yet more realism to testbeam model (material, instrumented regions, etc.)
 - Understanding beamline characterisation of beam itself empirically, or by modelling ~accelerator-style the transport line (BDSIM et al?)
- Longer term plans include
- Detailed study of hadronic shower substructure
 - separation of neutrons, e.m., hadronic components, mip-like, "deep analysis"
- Clearly sensitive to details of models and CALICE actively pursuing this
- Significant impact on particle flow algorithms, in development for detector optimisation
 - e.g. PandoraPFA, which uses such assignments to improve event reconstruction
- Essential to compare data from high granular detectors with simulations
- Integrated approach to develop optimal calorimety, not just HCAL
- Work on "deep analysis" ongoing, but not ready for public consumption yet!

2007 CERN Testbeam

- ECAL: 54 PCBs (30 layers)
 - ▶ 216 channels/PCB in central part and 108/PCB in bottom part
 - ▶ Total channels: 9072
 - ▶ Total radiation length: 24 X₀
- AHCAL: 38 fully commissioned modules
 - 30 modules with fine granularity = 216 tiles
 8 modules with coarse granularity = 141 tiles
 - Total channels: 7608
 - ▶ Total interaction length: 4.5λ
- TCMT: 16 layers fully instrumented
 - Alternated cassettes (from layer 2 to 16) have been staggered in X and Y

```
\Rightarrowlayer 2 = nominal; layer 3 (vert) = -1 inch in X; layer 4 (hor) = +1 inch in Y;
```

repeated up to layer 16

A difficult start....

http://www.pp.rhul.ac.uk/~calice/fab/WWW/Pictures.htm

The setup two weeks later....

2007 Beam instrumentation description

News on the beamline

- 1) Cherenkov operated for e/π and π/p separation
- 2) 3 x/y pairs of MWPC with double readout
- 3) 10x10 cm trigger only (no 3x3)
- 4) amplitude r/o of 1cm thick scint. counter (20x20 inner veto) + outer veto with 20x20 cm hole to tag double particle
- 5) hodoscope installed for initial muon runs and from ECAL chip irradiation to end

MWPCs and Veto

- Three MWPC (from CERN)
 - ▶ 50/50 Ar/CO₂ gas mixture
 - X, Y readout
 - ⇒200 mV threshold (100 mV after August 8th)
 - ▶ Aligned wrt beam-line with 0.2 mm precision
- Veto counters
 - ▶ 4 scintillator counters
 - ▶ Total dimension: 100X100cm, with 20x20cm hole corresponding to the 20x20cm trigger scintillator

Energy points and particle types

	Proposed in TB plan	Collected during TB	
Energy (GeV)	6,8,10,12,15,18,20,25,30,40,50,60,80	6,8,10,12,15,18,20,25,30,40,50, 60,80,100,120,130,150,180	
Particles	π±/e±	π±/e±/protons	

- Beam energies extrapolated from secondary beam
 - Electron beam obtained sending secondary beam on Pb target
- π/e separation achieved using Cherenkov threshold detector filled with He gas
 - Possible to distinguish π from e for energies from 25 to 6 GeV
- π/proton separation achieved using Cherenkov threshold detector with N₂ gas
 - = Possible to distinguish π from protons for energies from 80 to 30 GeV

Angle and position scans

	Proposed in TB plan	Collected during TB
Angles	0, 10, 15, 20, 30	0, 10, 20, 30
	Centre of ECAL	Centre of ECAL ±6cm from ECAL centre wafer
Position		Bottom slab of ECAL (±6,0,±3cm, -3cm)
scans	Centre of AHCAL	Centre of AHCAL
		Centre of ECAL; AHCAL ±6cm off beam-line
	Inter-alveolae	Inter-alveolae (±3cm, ±3cm)

Total events collected

Total events on disk

Combined ECAL+AHCAL

AHCAL only

Last run	33 1693
Number of runs	1 693
Combined runs to grid	1 693 (100%)
Converted runs to grid	1 693 (100%)
Disk space	8 274 GB
Disk space for converted runs	5 965 GB
Total disk space used	13 TB, 927 GB

Last run	35 0395
Number of runs	395
AHCAL runs to grid	395 (100%)
Converted runs to grid	395 (100%)
Disk space	598 GB
Disk space for converted runs	369 GB
Total disk space used	0 TB, 967 GB

Summary

- CALICE is developing exceptionally performant calorimetry for ILC
- Excellent opportunity to further "stress test" hadronic models
- First significant results from 2006 test beam runs at CERN/DESY Summer 2007
- Very large data sets from CERN in 2007, substantially more than planned for
 - Analysis in progress
- Careful, realistic simulation of beamline and detectors essential before most useful comparisons with hadronic models
 - ▶ Enhancements to modelling being made, ~month
- Plans for detailed comparisons, results to come soon
- Welcome suggestions for additional model tests from the respective authors

Backup slides...

Selection of slides shown at G4 Review, 15-20/4/2007 by Erika Garutti (+Vasily Morgunov)

Models comparison

Integrated quantities

Models comparison

Differential quantities

Study on hadronic shower profiles, G. Mavromanolakis (2004)

The HCAL high granularity offers the possibility to investigate longitudinal and lateral shower shapes with unprecedented precision:

- 38 points for longitudinal profile (if ECAL and TCMT included up to 84)
- 9 points for lateral profile