Status of INCL cascade and ABLA evaporation models in Geant4

Aatos Heikkinen, HIP

September 18, 2007

Talk outline

Credits

Background

Physical content in short

Placement in model inventory

Implementation

Verifying the translation

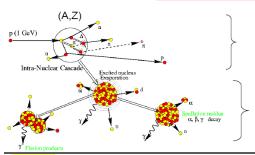
Example application

Future plans

In conclusion

2/13

Credits


- ▶ Pekka Kaitaniemi, HIP (CEA, 2007 November -) (coding)
- Alain Boudard (SphN-DAPNIA, CEA-Saclay, France. Our main contact to INCL.)
- Joseph Cugnon (University of Liége, Belgium. INCL model development.)
- Y. Yariv (SphN-DAPNIA, CEA-Saclay and Soreq, Israël. INCL development)
- ABLA group for kindly providing the code
- ► Christelle Schmidt, IPNL (for providing a C++ translation of ABLA fission code)

Background

As usual, 2005, Geant4 was actively seeking suitable new models to fully cover various user requirements.

- ▶ 2006: INCL 4.2 cascade and ABLA v3 evaporation/fission models were agreed to be include into Geant4.
 - ▶ These state-of-the art codes are actively developed and published.
- ▶ June 2006, CERN: 1st Geant4 INCL ABLA mini-workshop.
- ▶ *December 2006, CEA*: 2nd meeting setting project time-line and starting translation.
- ▶ January 2007 : Interfaces released (wrapping FORTRAN code). First test runs by Alex and Alberto.
- ► July: INCL raw translation ready.
- ► August: INCL tested. ABLA translated and testing continues.
- ► September: INCL cvs tag incl-cand-00 provided for December Geant4 release.

Physical content in short

INCL4:

Series of indep. NN interactions ($\lambda_b = h/p$) < ($\Lambda = 1/p.\sigma_{NN}.f$) in a potential NN->NN: NN->N Δ : $\Delta < = N\pi$: Δ scattering (No 2π channels)

All particles explicitly followed in time; straight trajectories (no refraction) r-space density: realistic Wood-Saxon; p-space density: Fermi level.

Pauli blocking (local-statistic) and long range correlation

Stopping time fixed once for ever from emission rates

NO ad hoc PARAMETERS in the MODEL! (Gives also σ_{Reac} and normalisations)

Physical module

INCL4

Energetic pions and nucleons

+ Remnant nucleus (A,Z,E*,J,P,θ,φ)

Deexcitation module (ABLA)

Evaporated particles, Fission products, Residual nuclei. (No γ and radioactive decay)

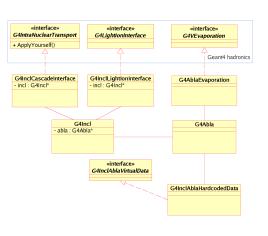
5/13

Physical content in short

proton, neutron
pions (π^+, π^0, π^-)
deuteron, triton
He3, alpha
200 MeV - 3 GeV
Carbon (C)
Uranium (U)
built-in random number generators
Woods-Saxon potential surface
Coulomb potential
non-uniform timestep
pion and delta production cross sections
delta decay
Pauli blocking

ABLA V3	
Supported input	Excited nuclei
Output particles	proton, neutron
	alpha
	nucleus fragment
Models	proton emission
	neutron emission
	alpha emission
	fission

References:


- J. Cugnon et al Nuc. Phys. A352 (1981) 505
- J. Cugnon et al Nuc. Phys. A462 (1987) 751
- J. Cugnon et al Nuc. Phys. A500 (1989) 701
- A.R. Junghans et al Nuc. Phys. A629 (1998) 635
- J. Benlliure et al Nuc. Phys. A628 (1998) 458

A. Boudard et al Phys. Rev. C66 (2002) 044615

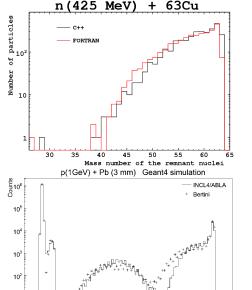
12th Geant4 Workshop, September 13-19, Hebden Bridge, UK.

Geant4 9.1 Hadronic model inventory **CHIPS** ABLA evaporation INCL HETC evaporation At rest CHIPS (gamma) Absorption μ, π, K, anti-p Photo-nuclear, electro-nuclear FTF String (up to 20 TeV) High precision neutron Evaporation Pre-QG String (up to 100 TeV) Fermi breakup compound Multifragment Binary cascade Photon Evap Bertini evap. cascade pre-comp. Fission Rad. decay MARS LE pp, pn HEP (up to 20 TeV) 1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1 TeV

Implementation

- ► First implementation of Liège cascade INCL4.2 and ABLA v3 evaporation follows closely original FORTRAN code.
- Left: Models are interfaced to Geant4 using standard hadronic interfaces.
- For coming releases we will re-design models and include extensions of INCL5 and future ABLA releases.

Implementation

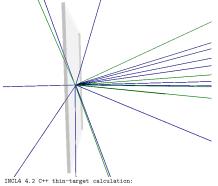

Everything is located at hadronic/models/incl/.

Interfacing to Geant4 hadronic physics framework:

- ► G4InclCascadeInterface G4HadFinalState* ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus):
- ▶ G4InclLightIonInterface
- ► G4AblaEvaporation (Not yet tested; code to be relocated to hadronic/models/abla)

In this project, we have tested non-standard tools:

- Doxygen for documentation system (documentation, including LaTeX, directly taged in code).
- ► ROOT scripting for FORTRAN - C++ verification. (Running INCL in hybrid language mode, and plotting.)
- Wiki technology (http://g4inclabla.wikispaces.com) as a collaborating tool.



10

Aatos Heikkinen, HIP

► Up: Validating Geant4 implementation of INCL cascade and ABLA evaporation models.

► *Down:* Comparison of isotope production between Geant4 models Bertini cascade (with evaporation) and INCL 4.2 with ABLA v3.

Run setup:

Type: 1 Energy: 500 MeV

Bullet: Target: Events: 100

4 208 7: 82

Output information: Total number of events: Asked by the user: 99

Transparent: 47 Proper cascades: 52 Maximum impact parameter: 10.9878

Geometrical cross-section: 3792.89 mb Total reaction cross section: 1992.23 mb

Calculation output in ROOT file: ../data/Pb208Proton500MeV100Events.root

Release will come with example application utilizing INCL4.2 and ABLA v3 models.

Left: 500 MeV proton projectiles hitting 2 mm Pb target -Geant4 visualization of INCL4.2 model with log from example application.

Future plans

- September 2007:
 - ► Test INCL cvs tag *incl-cand-00* for the December release.
 - Fixing ABLA bugs.
 - CHEP'07 proceedings: A Heikkinen, P Kaitaniemi, A Boudard, Implementation of INCL4 cascade and ABLA evaporation codes in Geant4,
- October: Prepare a cvs tag for ABLA. Continue removing FORTRAN and C-like features from code.
- ► November:
 - Test final candidate for INCL and ABLA.
 - ▶ Workshop to re-design the code (CERN, CEA?). We need to remember that INCL5 C++ will be released also as totally independent code.
- ▶ June 2008: Fully re-designed INCL and ABLA expect to be released.
- ▶ December 2009: At least some of the INCL5 extensions (light ion projectiles, low energy) to be released. Updated ABLA?

In conclusion

- ► INCL candidate tag is now ready. It contains set of tests, an example application, and a short documentation for Physics Reference Manual.
- ▶ In ABLA testing we have have found problems in fission, yet candidate tag for December release should come in time.
- ▶ We will proceed with re-modeling of INCL code.
 - ▶ A significant requirement/complication is that we want to synchronize design Geant4 and stand-alone C++ version of INCL.
 - ► Could we use incl -namespace instead of naming convention G4*?
- ▶ We seem to have now enough manpower to attack these issues:
 - Pekka Kaitaniemi is starting in November his INCL relates PhD work at CEA.
 - ▶ Also, a significant contribution might come from INFN-Catania. They are interested developing Geant4 capability for Carbon medical beams.
 - We are planning a mini-workshop latest in November to launch this collaboration.