JST CREST / Kobe University
T. Yamashita

12th Geant4 Collaboration Workshop

Hebden House, Hebden Bridge (UK)

13 September 2007.

GEANT 4 SIMULATION OF HIBMC FACILITY USING DICOM

Outline

- Proton simulation with DICOM
 - 1. Introduction
 - 2. Software framework
 - 3. Facility
 - 4. DICOM interface
 - 5. Plan
- II. Carbon ion simulation
 - 1. Introduction
 - 2. Simulation
- III. Summary

I Proton simulation1. Introduction

- Pencil beam algorithm is widely used
 - Sum contributions from each pencil beam in vicinity
 - Does not take into account contributions from
 - Secondary particles
 - Particles scattered at collimator edge
- How accurate in inhomogeneous regions?

I Proton simulation2. Software framework

- Development of Software framework for particle therapy based on Geant4 has started 2003
 - General purpose
 - This framework reduces effort to write source
 - Beam modules common to particle therapy systems are provided
 - Ridge filter, Wobbler magnet
 - The user only needs to give parameters
 - Once source is written, setup is changeable through UI of Geant4
 - Remove or add beam module
 - Including DICOM interface
 - Not yet for all facility

I Proton simulation 3. Facility(1)

- Hyogo Ion Beam Medical Center(HIBMC)
 - Synchrotron
 - protons up to 230 MeV
 - carbon ions up to 320 MeV u⁻¹
 - 6 Beam lines
 - 2 Gantries, only for proton
 - 4 fixed angle (2 horizontal, vertical and 45 degree)
 - For proton & carbon

I Proton simulation 3. Facility(2)

- HIBMC
 - Wobbler magnets and scatterer
 - Lateral beam spreading
 - Ridge filter
 - As a range modurator
 - MLC and range compensator
 - Shape and modify the beam

I Proton simulation 4. DICOM inteface(1)

- Use CT images stored in DICOM
- DICOM-RTPlanXholds beammodule setup
- Example
 - Head
 - 512 x 512 pixels,199 slice
 - 0.625 x 0.625 x1 mm

Figure deleted

I Proton simulation 4. DICOM interface(2)

- CT images stored in DICOM are read through the interface
- Implemented as a set voxels filled by water with different density values
 - Remeshed
 160 x 160 x 97 voxels, 2 x 2 x 2 mm each
 - CT-numbers are converted to density values, rounded off to 2 decimal places
 ..., 0.99, 1.00, 1.01, ...
- Beam module setup stored in DICOM-RTPlanX is also read through the interface
 - Beam energy, Range shifter, Ridge filter and etc.

gMocren

Visualization of CT images and dose

Figure deleted

I Proton simulation 4. DICOM interface(3)

Figure deleted

- Confirm the interface
 - Position, module setup

Figure deleted

Figure deleted

Figure deleted

I Proton simulation 5. Plan

- Validation
 - Comparison between Geant4 and measurement in water phantom
- Tissue substitutes or water
- Comparison between Geant4 and pencil beam algorithm
 - Source of difference

II Carbon ion simulation 1. Introduction

- High LET
 - Better local control
- Nuclear reaction plays more important role
 - projectile ion can fragment into lighter species
- More difficult than proton

II Carbon ion simulation 2. Simulation

 Comparison between Geant4 and measured dose-depth curve

Red histogram
Geant4
Green cross
Measured dose

Detail study is under way

Summary

- Software framework for particle therapy is almost ready to use
- DICOM interface (for HIBMC) was confirmed to be working properly
- Started comparison between Geant4, pencil beam algorithm and measured depth-dose curve in water phantom
- Detail study of carbon ion simulation is under way

Thank you for your attention!