Geant4 Workshop, Hebden Bridge 13-19 September 2007

CPU benchmarks for Magnetic Field

T.Nikitina CERN

Pure tracking benchmark

Honeycomb calorimeter benchmark in source/geometry/benchmarks
It consists of transporting 10,000 geantinos, along predefined directions, in a honeycomb calorimeter made of two modules, each 26 x 50 tubes

Release		Ratios	
5.2.p02	2.57s	0.84	
6.2.p02	3.05s	1.00	< G4Navigator becomes
7.0.p01	3.00s	0.98	
7.1.p01a	3.06s	1.00	
8.0.p01	3.07s	1.00	
8.1.p02	3.02s	0.99	
8.2.p01	3.14s	1.03	< in G4Navigator
8.3	3.15s	1.03	LocateGlobalPointAndSetup() metod
8.3.p01	3.13s	1.02	becomes
9.0	3.15s	1.03	
9.0.p01	3.14s	1.03	

These changes in *G4Navigator* have been done to accommodate the Tgeo/VMC interface (ALICE requirement)

Tracking in Magnetic Field: only transportation process.

BaBar Tracker in geometry/magneticfield/tests/NTST

It consists of simulating the BaBar silicon tracker and 40 layers drift chamber, in a 1.5 T constant magnetic field.

Only transportation, <u>no physics</u>. **100** B-Bbar events simulated.

Locally build with static libraries .

With afs version big time variations were measured (5% or more)

Release		Ratio	S			
7.1.p01 a	2.05	1.00				
8.0.p01	2.04	1.01				
8.1.p02	2.14	1.04	< G4FieldTrack::LoadFromArray			
8.2	2.31	1.12	< G4Navigator::LocateGlobalPointAndSetup			
8.2.p01	2.31	1.12	become virtual			
8.3	2.3	1.12				
8.3.p01	2.31	1.12				
9.0	2.26	1.10	< G4PropagatorInField			
9.0.p01	2.26	1.10	(better initialization of G4FieldTrack array)			
The number of steps and calls to fields are almost the same in all cases.						

Observations / Conclusions

- Main advantages : complex geometry
 B-Bbar events
- Needs to read B-Bbar events from file (12 Mb) (Can be replace by charged geantino, if needed It has his own Gun generator)

- Macro can be run for 100 or 1000 B-Bbar events (about 200 or 2000 sec)
- In output :
 - -time per event
 - -number of calls to Field
 - -number of calls to ChordFinder
 - -number of steps

Tracking in Magnetic Field: QGSP_EMV Physics List

BaBar Tracker in geometry/magneticfield/tests/NTST

Same Geant4 example as in the previous slide, but this time with the QGSP_EMV Physics List. 100 B-Bbar events simulated. Local build with static libraries.

Release		Ratios
7.1.p01 a	3.04	1.00 (QGSP_GN)
8.0.p01	3.78	1.24
8.1.p02	3.85	1.27
8.2	3.72	1.22
8.2.p01	3.84	1.26
8.3	3.91	1.29
8.3.p01	3.89	1.28
9.0	3.57	1.17 < Code review of Electomagnetic
9.0.p01	3.62	1.19 physics module

* The variations are due to <u>tuning</u> and adding safety checks to Urban Multiple Scattering model.

Details on NTST test

- NTST test has different options :
 - -looperCut Kill looping particle below this cut
 - -minEcut Minimum Energy Cut
 - -maxEcut Maximum Energy Cut
- Corresponding macros: Run2xa.mac looperCut= 200 MeV, minEcut=1 MeV Run2xb.mac minEcut=1 MeV Run2xc.mac default
- NTST test is run with QGSP_EMV

Do we run all macros for testing ? Do we use different Physics Lists ? QGSP?

Observations / Conclusions

- afs version has to big fluctuations (5% or more)
- local installation with static libraries can also give 3-4 % of difference if rerun benchmarks after few months
- would be very useful make benchmarking more automatic run benchmarks, grep for information, compare with previous results give the results of comparison
- Add to benchmarking tests more complex test with more complex geometry (CMS full detector) and non uniform field