18.Sep. 2007 @ Hebden Bridge

Carbon Ion depth-dose profile in HIBMC facility

Toshiyuki Toshito KEK T. Yamashita 13-Sep.
Medical / Gate Applications
Geant4 simulation of HIBMC facility using DICOM
Proton therapy at HIBMC facility
Visualization of CT image and dose in real patients were presented.

Study for Carbon therapy is also underway.

We have realized that to reproduce depth-dose profile for carbon is much more difficult than for proton.

Depth-dose profile

Nozzle for carbon at HIBMC facility in Hyogo, Japan

 E_{kine} =320MeV/n Δ P/P=0.1%(FWHM) in simulation In fact, it is estimated to be±0.02%

Quads : 3750 Triangles : 2016

Dosimetry

Simulation

Cross section

2cmx2cm for speedup (~6hr with 20CPU) 6cmx6cm for further speedup

Thickness

sensitive detector is sliced into 100micron thickness

Configuration

Geant4 version 4.8.2.p01/4.9.0

Physics List

Electromagnetics – LowE G4hLowEnergyionisation Physics table of dE/dx SRIM2000p for E<10MeV/n Physics tables for proton are used for lons after scaled by mass and effective charge

theProtonIonisation->SetElectronicStoppingPowerModel(G4Proton::Proton(),"SRIM2000p"); theProtonIonisation->SetHighEnergyForProtonParametrisation(10.*MeV);

Ion inelastic - Binary cascade with Shen's total cross section Hadron elastic - G4HadronElasticPhysics("elastic",0,false) No Ion elastic

Decay ⁸Be→2alpha

G4RADIOACTIVEDATA z4.a8

Production cut 1mm (30micron in water phantom)

/run/setCut 1. mm /run/SetCutForRegion WaterPhantom 30. micrometer

electromagnetics

ICRU_R49p for E<2MeV/n vs. SRIM2000p for E<10MeV/n

Standard EM vs. LowE

4.8.2.p01 LowE vs. 4.9.0 LowE

Step length in LowE

4.8.2.p01 Std vs. 4.9.0 Std

Step length in Standard EM

Thickness of slice

Step length is limited by thickness of slice

Ion inelastic / elastic

Total cross section

Shen vs. Tripathi vs. TripathiLight

6cmx6cm rightMLCpos 4.9.0

BC vs. JQMD vs. PHITS

Ion elastic

Collaborative work with T.Koi

JQMD can treat elastic process as peripheral collision. A version to manipulate JQMD to simulate elastic process was developed by T.Koi and tested.

```
JTri->SetEnhanceFactor(1.0);

multiplication factor against Tripathi Cross Section

gionInelasticModel->SetSDMEMin(2*MeV);

minimum excitation energy treated by statistical process

1MeV:default

gionInelasticModel->SetPeripheralFactor(1.2);

multiplication factor against Tripathi Cross Section to derive

maximum of impact parameter

gionInelasticModel->SetElasticParameter (2);

region to judge the collision as elastic

2:default
```

Elastic (150MeV proton)

Ion elastic

Summary

- No configuration to reproduce the height of Bragg peak in HIBMC facility has not been found so far.
- Both electromagnetics and Ion inelastic/elastic process significantly affect the depth-dose profile.
- More systematic study in electromagnetics is needed.
- Ions elastic process will be improved.
- We need more experimental data for cross check.
- I welcome any idea or suggestion.

lon elastic

Collaborative work with T.Koi

Detector position

2cmx2cm rightMLCpos

Detector size

G4hLowEnergyIonisation.cc

G4double G4hLowEnergyIonisation::ElectronicLossFluctuation(const G4DynamicParticle* particle, const G4MaterialCutsCouple* couple, G4double meanLoss, G4double step) const { // Gaussian fluctuation if(meanLoss > kappa*tmax || tmax < kappa*ipotFluct) return loss; // Non Gaussian fluctuation . return loss;

Energy loss fluctuation

Energy fluctuation model

Gauss vs. non-gauss

SOBP 10cm

Spread of beam momentum

 $\Delta P/P=0.35\%$ (FWHM) : far from realistic

Wobbler

290 2x2

070723

290 2x192

400 2x2

400 2x192

290 2x2 BC

290 2x192 BC

400 2x2 BC

400 2x192 BC

