What happens in reality — or how to make
CoupledTransportation Reproducible

Comparison with zero

Comparison between doubles
SafetyHelper

Caching?

UrbanMsc

 Fixed geometrical values/dimensions?
 Other safety issues

arwhPF

Alex Howard, CERN
Safety Implementation - queries
Geant4 Users Workshop Hebden Bridge 19*h September 2007

mnt4 Alex Howard, CERN — Coupled Safety — Hebden Bridge 19th September 2007

Comparison with zero

e e San e e o e o Dan . A

SteppingManger contains the following logic:
= Max(double - double, 0.);

- Why?

SteppingManager2 contains the method

safetyProposedToAndByProcess()

- What does that mean?

UrbanMscModel checked whether safety was
positive - which is a hazard if it's uninitialised
or actually zero

SafetyHelper should be used more extensively?

kCarTolerance should be used instead of zero?
- Not used in distance to boundary in MSc - why?

DistanceToOut returns the real value - always -
seems okay provided the boundary definition is
applied elsewhere

Alex Howard, CERN — Coupled Safety — Hebden Bridge 19th September 2007

Comparison between doubles

o G4Navigator has a comparison between two
G4ThreeVectors @ |line650 - why?

o CLHEP contains the equals operator for
G64ThreeVectors by comparing all three
components - is this safe?

o CoupledTransportation compares doubles - is it
safe to assume they are local and identical?

mnt4 Alex Howard, CERN — Coupled Safety — Hebden Bridge 19th September 2007

Double Comparison

i
#ifdef G4VEREOSE

£f The following checks only make sense 1f the mowve i1z larger

£ than the tolerance.

£

G4ThreeVector OriginalGlobalpoint =
fHistory. GetTopTransform () . Inverse ().
TransformPoint (fLastLocatedPointLocal);

Gddouble shiftOriginSafSqg = (fPrevicusSftlrigin-pGlobalpoint). magZ();

£ Check that the starting point of this step is

Af within the isotropic safety sphere of the last point

£f to a accuracyfprecision given by fAccuracyForWarning.

£ 1f so e

S IT 1t fails by more then FAccuracyrUPBemsgeption exit with ercror.
A

if({ shiftOriginSafSq »= sqr (fPrevicusSafety))

i

bedoukle shiftlrigin = std::sgrtlishifstciginSafsg) ;
Gddouble dirrsoiicsar = suiicurigin - fPrevicusSafety:

1f { diffshiftsaf » faccuracyForWarning)

GdException ("G4Navigator: : ComputeStep ()",
"UnexpectedPositionShift", JustWarning.,
"Bocuracy ERROR or slightly inaccurate position shift. “);
Gdcerr << " The Step's starting point has moved "
<¢ std: sgrtimovelenSg) /mm << " mm " << Gdendl
g " since the last call to a Locate method. " << Gdendl;
Gdcerr << " This has resulted in moving "
¢4 shiftOrigin/mm << " mm "
<4 " from the last point at which the safety
LE was calculated " << Gdendl;
Gdcerr << " which is more than the computed safety=
¢4 fPreviousSafety/mm << " mm at that point. " <¢ Gdendl;
Gdcerr << " This difference is "
<¢ diffshiftSaf/mm << " nm. " << Gdendl
< " The tolerated accuracy is "
¢4 faccuracyForException/mm << " mm. " << Gdendl;

static Gdint warnbow =
1f ¢ {{++warntow % 100)
i

0;
== 1})

Gdoerr << This problem can be due to either " << Gdendl;

Gdocerr << - a process that has proposed a displacement"
<< larger than the current safety . or" << Gdendl;

Gdocerr << - ilnaccuracy in the computation of the safety
<4 Gdendl;

Gdcerr << " We suggest that you " << Gdendl

Gdint oldcoutPrec= Gdcout. precision(8);
Gdint oldcercPrec= Gdcerr.precision(l0);
1f{ fWerbhose » 0)

{

Gdoout << "+** GdNawigator::CompubeStep: **+" {4 Gdendl;

Gdcout << " Wolume = " << motherPhysical-:GetMName ()
<¢ " - Proposed step length = " << pCurrentProposedStepLength
<« Gdendl;

if [f¥erhose == 4)

1

Gdocout <4 " Called with the argquments: " << Gdendl
gl Globalpoint = " << std::setw(25) << pGlobalpoint
¢ G4endl
<" Direction = " <4 std::setw(2h) << pDirection
¢ Gdendl;
Gdoout << "
PrintState () ;
)

Upon entering :" << Gdendl;

1

static Gddouble fAccuracyForWarning kCarTolerance,
fhcouracyForException = 1000*kCarTolerance;
#endif

GdThreeVector newLocalPoint = ComputeLocalPointi{ntlobalpoint);
if{ newLocalPoint |= fLastLocatedPointLocal)
i

| Wil vhether the relocatilon Jso e safety

G4ThreeWector oldLocalPoint = fLastLocatedPointLocal;
Gddouble movelenSg = (newLocalPoint-oldLocalPoint). magl();

if [mowelenSg »= kCarTolerance*kCarTolerance)

1
#ifdef GAVEREOSE

Ff The following checks only make sense if the move is larger

£ than the tolerance.

o

G4ThreeVector OriginalGlobalpoint =
fHistory. GetTopTransform () . Inverse ().
TransformPoint (fLastLocatedPointLocal);

Gddovble shiftOriginSafSq = (fPrevioussSftOrigin-pGlobalpoint) . magl () ;

£ Check that the starting point of this step is

£F within the isotropic safety sphere of the last point

Af to a accuracySprecision giwven by faccuracyForWarning.

£f 0 If so give warning.

Ff If it fails by more than fAccuracyForException exit with error.
£

1f{ shiftlOriginSafSqg »= sqr(fPrevicusSafety))

Gddovble shiftfrigin = std::sgroishiftOriginSafsSg) ;
Gddovble diffShiftSaf = shiftOrigin - fPreviousSafety;

SafetyHelper

o Should the onus for correct safety (positive or
zero if on a boundary) be moved to the
SafetyHelper

o Would ease maintenance and consistency?

mnt4 Alex Howard, CERN — Coupled Safety — Hebden Bridge 19th September 2007

Caching

The Transportations, Navigator, PathFinder and
SteppingManagers all cache the safety between
steps or proposals from processes

Is this consistent?
Are all the (local) caches necessary?
SafetyHelper?

Alex Howard, CERN — Coupled Safety — Hebden Bridge 19th September 2007

G4UrbanMscModel (1)

PR AR TR

G4UrbanMscModel
contains the
following examples
of fixed (with
dimension)
Geometrical
parameters:

+ Help

v W R G E?

const G4String& nam)

: G4¥EmModel (nam) .
dtrl(m_dtrl).
lambdalimit (m_lambdalimit).
facrange(m_facrangel},
facgeom{m_facgeom),
skin(m_skin),
steppingflgorithm(m_stepAlg).
samplez(m_samplez),
isInitialized{(false’

taubig
tausmall
taulim
currentTau
tlimitminfix
stepmin
skindepth
smallstep

currentRange
frscaling?
frscalingl
tlimit
tlimitmin

nstepmax
geombig
geommin
geomlimit
presafety
facsafety
Zeff
particle
theManager
inside
insideskin

G4UrbanMscModel . cc

8.0:
1.e-20;

1.e-6;

taulim;

1.e—6%mm:
tlimitminfix:
skin®stepmin;
1.e10;

0. :

0.25;
1.-frscaling?:
1.e10#%mm:
10.#tlimitminfix:
P8

1.e50#mm;
1.e-3%mm;
geombig;

0.%mm;

0.25:

j

0:

G4l ossTableManager: :Instance() ;
false:
false:

(C++ CY¥Y5-1.66 fAbbrev)——-1197--23%

G4U rban MSCMOdel (2) sp—>GetStepStatus();

// standard wversion

L
if (steppingfAlgorithm == fUseDistanceloBoundary)
{
/fcompute geomlimit and presafety
GeomLimit (track) :

// is far from boundary
if(currentRange <= presafety)
I
inside - true;
return tPathlLength:

What issmall step?
What istlimit? }

smallstep += 1.;
insideskin = false:

if{{stepStatus == fGeomBoundary) || {(stepMNumber == 1))
£
if{stepNumber == 1) smallstep = 1.el10;
else smallstep = 1.;

// facrange scaling in lambda
// not so strong step restriction above lambdalimit
G4double facr = facrange:
if(lambda0 > lambdalimit)
facr #= frscalingl+frscalingZ#lambda0/lambdalimit;

// constraint from the physics
if (currentRange > lambda®) tlimit = facr#currentRange:
else tlimit = facr®lambda0:

I T WSRO gl

fflower limit for tlimit
if(tlimit € tlimitmin) tlimit = tlimitmin;:

// constraint from the geometry (if tlimit above is too big)
G4double tgeom = geombig;

if({geomlimit < geombig) && {(geomlimit > geommin))
{
if(stepStatus == fGeomBoundary)
tpeom = peomlimit/facpeom:
else
tpeom = 2.%pgeomlimit/facgeom:

if(tlimit > tgeom) tlimit = tpeom:
¥
¥

7/11T track starts far from boundaries increase tlimit!
if(tlimit < facsafety®presafety) tlimit = facsafety®presafety :

/7 Gdcout << "tgeom= 7 << tgeom << 7 geomlimit= " << geomlimit
i << " tlimit= " << tlimit << " presafety= " << presafety << Gdendl:

// shortcut
if ({tPathLength < tlimit) && (tPathlLength < presafety))
return tPathLength:

Gd4double thnow = tlimit:
// optimization ...

if(geomlimit < geombig) tnow = max(tlimit.facsafety®*geomlimit):

// step reduction near to boundary
if(smallstep < skin)

I T WSRO gl

if(geomlimit > skindepth)
{
if(tnow > geomlimit—0.999#%skindepth)
thow = geomlimit—0.999%skindepth:
¥
else
{
insideskin = true:
if(tnow > stepmin) tnow = stepmin;
s
¥

if (tnow < stepmin) tnow = stepmin;

if(tPathLength > tnow) tPathLength = tnow ;
s
// for 'normal' simulation with or without magnetic field
// there no small step/single scattering at boundaries
else if{steppingfilgorithm == fUseSafety)
{
[| 77 compute presafety again if presafety <= 0 and no boundary
// i.e. when it is needed for optimization purposes
if({stepStatus 1= fGeomBoundary) && (presafety < tlimitminfix))
presafety = safetyHelper—->ComputeSafety(sp—>GetPosition()):

// is far from boundary
if (currentRange < presafety)
{
inside = true;
return tPathLength:
¥

if({stepStatus == fGeomBoundary) || (stepNumber == 1))

Conclusions/Discussion

Why are we comparing doubles?

Sometimes safety is un-initialised (old
transportation/navigation?), which means even comparing
with zero is a hazard...

The SteppingManager max(double-double, 0) causes real
reproducibility issues

64UrbanMscModel baffles me completely:

- Fixed geometrical values (with no reference to
scalability/geomtry size)

- Safety compared against internal values - why?
- AtBoundary definition doesn't appear to be concrete
Caching of safety vs. SafetyHelper vs. local copies

should be consistent.. Otherwise it can get carried over
from the previous event!

Verbosity displays a number of safety values which are
small but non-zero ¢(10-12) - why?

Alex Howard, CERN — Coupled Safety — Hebden Bridge 19t September 2007 12

