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Comparison with zero

e e San e e o e o Dan . A

SteppingManger contains the following logic:
= Max(double - double, 0.);

- Why?

SteppingManager2 contains the method

safetyProposedToAndByProcess()

- What does that mean?

UrbanMscModel checked whether safety was
positive - which is a hazard if it's uninitialised
or actually zero

SafetyHelper should be used more extensively?

kCarTolerance should be used instead of zero?
- Not used in distance to boundary in MSc - why?

DistanceToOut returns the real value - always -
seems okay provided the boundary definition is
applied elsewhere
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Comparison between doubles

o G4Navigator has a comparison between two
G4ThreeVectors @ |line650 - why?

o CLHEP contains the equals operator for
G64ThreeVectors by comparing all three
components - is this safe?

o CoupledTransportation compares doubles - is it
safe to assume they are local and identical?
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Double Comparison

i
#ifdef G4VEREOSE

£f The following checks only make sense 1f the mowve i1z larger

£ than the tolerance.

£

G4ThreeVector OriginalGlobalpoint =
fHistory. GetTopTransform () . Inverse ().
TransformPoint (fLastLocatedPointLocal);

Gddouble shiftOriginSafSqg = (fPrevicusSftlrigin-pGlobalpoint). magZ();

£ Check that the starting point of this step is

Af within the isotropic safety sphere of the last point

£f to a accuracyfprecision given by fAccuracyForWarning.

£ 1f so e

S IT 1t fails by more then FAccuracyrUPBemsgeption exit with ercror.
A

if({ shiftOriginSafSq »= sqr (fPrevicusSafety) )

i

bedoukle shiftlrigin = std::sgrtlishifstciginSafsg) ;
Gddouble dirrsoiicsar = suiicurigin - fPrevicusSafety:

1f { diffshiftsaf » faccuracyForWarning )

GdException ("G4Navigator: : ComputeStep ()",
"UnexpectedPositionShift", JustWarning.,
"Bocuracy ERROR or slightly inaccurate position shift. “);
Gdcerr << " The Step's starting point has moved "
<¢ std: sgrtimovelenSg) /mm << " mm " << Gdendl
g " since the last call to a Locate method. " << Gdendl;
Gdcerr << " This has resulted in moving "
¢4 shiftOrigin/mm << " mm "
<4 " from the last point at which the safety
LE was calculated " << Gdendl;
Gdcerr << " which is more than the computed safety=
¢4 fPreviousSafety/mm << " mm at that point. " <¢ Gdendl;
Gdcerr << " This difference is "
<¢ diffshiftSaf/mm << " nm. " << Gdendl
< " The tolerated accuracy is "
¢4 faccuracyForException/mm << " mm. " << Gdendl;

static Gdint warnbow =
1f ¢ {{++warntow % 100)
i

0;
== 1} )

Gdoerr << This problem can be due to either " << Gdendl;

Gdocerr << - a process that has proposed a displacement"
<< larger than the current safety . or" << Gdendl;

Gdocerr << - ilnaccuracy in the computation of the safety
<4 Gdendl;

Gdcerr << " We suggest that you " << Gdendl




Gdint oldcoutPrec= Gdcout. precision(8);
Gdint oldcercPrec= Gdcerr.precision(l0);
1f{ fWerbhose » 0 )

{

Gdoout << "+** GdNawigator::CompubeStep: **+" {4 Gdendl;

Gdcout << " Wolume = " << motherPhysical-:GetMName ()
<¢ " - Proposed step length = " << pCurrentProposedStepLength
<« Gdendl;

if [ f¥erhose == 4 )

1

Gdocout <4 " Called with the argquments: " << Gdendl
gl Globalpoint = " << std::setw(25) << pGlobalpoint
¢ G4endl
<" Direction = " <4 std::setw(2h) << pDirection
¢ Gdendl;
Gdoout << "
PrintState () ;
)

Upon entering :" << Gdendl;

1

static Gddouble fAccuracyForWarning kCarTolerance,
fhcouracyForException = 1000*kCarTolerance;
#endif

GdThreeVector newLocalPoint = ComputeLocalPointi{ntlobalpoint);
if{ newLocalPoint |= fLastLocatedPointLocal )
i

| Wil vhether the relocatilon Jso e safety

G4ThreeWector oldLocalPoint = fLastLocatedPointLocal;
Gddouble movelenSg = (newLocalPoint-oldLocalPoint). magl();

if [ mowelenSg »= kCarTolerance*kCarTolerance )

1
#ifdef GAVEREOSE

Ff The following checks only make sense if the move is larger

£ than the tolerance.

o

G4ThreeVector OriginalGlobalpoint =
fHistory. GetTopTransform () . Inverse ().
TransformPoint (fLastLocatedPointLocal);

Gddovble shiftOriginSafSq = (fPrevioussSftOrigin-pGlobalpoint) . magl () ;

£ Check that the starting point of this step is

£F within the isotropic safety sphere of the last point

Af to a accuracySprecision giwven by faccuracyForWarning.

£f 0 If so give warning.

Ff If it fails by more than fAccuracyForException exit with error.
£

1f{ shiftlOriginSafSqg »= sqr(fPrevicusSafety) )

Gddovble shiftfrigin = std::sgroishiftOriginSafsSg) ;
Gddovble diffShiftSaf = shiftOrigin - fPreviousSafety;




SafetyHelper

o Should the onus for correct safety (positive or
zero if on a boundary) be moved to the
SafetyHelper

o Would ease maintenance and consistency?
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Caching

The Transportations, Navigator, PathFinder and
SteppingManagers all cache the safety between
steps or proposals from processes

Is this consistent?
Are all the (local) caches necessary?
SafetyHelper?
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G4UrbanMscModel (1)

PR AR TR

G4UrbanMscModel
contains the
following examples
of fixed (with
dimension)
Geometrical
parameters:

+ Help

v W R G E?

const G4String& nam)

: G4¥EmModel (nam) .
dtrl(m_dtrl).
lambdalimit (m_lambdalimit).
facrange(m_facrangel},
facgeom{m_facgeom),
skin(m_skin),
steppingflgorithm(m_stepAlg).
samplez(m_samplez),
isInitialized{(false’

taubig
tausmall
taulim
currentTau
tlimitminfix
stepmin
skindepth
smallstep

currentRange
frscaling?
frscalingl
tlimit
tlimitmin

nstepmax
geombig
geommin
geomlimit
presafety
facsafety
Zeff
particle
theManager
inside
insideskin

G4UrbanMscModel . cc

8.0:
1.e-20;

1.e-6;

taulim;

1.e—6%mm:
tlimitminfix:
skin®stepmin;
1.e10;

0. :

0.25;
1.-frscaling?:
1.e10#%mm:
10.#tlimitminfix:
P8

1.e50#mm;
1.e-3%mm;
geombig;

0.%mm;

0.25:

j

0:

G4l ossTableManager: :Instance() ;
false:
false:

(C++ CY¥Y5-1.66 fAbbrev)——-1197--23%




G4U rban MSCMOdel (2) sp—>GetStepStatus();

// standard wversion

L
if (steppingfAlgorithm == fUseDistanceloBoundary)
{
/fcompute geomlimit and presafety
GeomLimit (track) :

// is far from boundary
if(currentRange <= presafety)
I
inside - true;
return tPathlLength:

What issmall step?
What istlimit? }

smallstep += 1.;
insideskin = false:

if{{stepStatus == fGeomBoundary) || {(stepMNumber == 1))
£
if{stepNumber == 1) smallstep = 1.el10;
else smallstep = 1.;

// facrange scaling in lambda
// not so strong step restriction above lambdalimit
G4double facr = facrange:
if(lambda0 > lambdalimit)
facr #= frscalingl+frscalingZ#lambda0/lambdalimit;

// constraint from the physics
if (currentRange > lambda®) tlimit = facr#currentRange:
else tlimit = facr®lambda0:




I T WSRO gl

fflower limit for tlimit
if(tlimit € tlimitmin) tlimit = tlimitmin;:

// constraint from the geometry (if tlimit above is too big)
G4double tgeom = geombig;

if({geomlimit < geombig) && {(geomlimit > geommin))
{
if(stepStatus == fGeomBoundary)
tpeom = peomlimit/facpeom:
else
tpeom = 2.%pgeomlimit/facgeom:

if(tlimit > tgeom) tlimit = tpeom:
¥
¥

7/11T track starts far from boundaries increase tlimit!
if(tlimit < facsafety®presafety) tlimit = facsafety®presafety :

/7 Gdcout << "tgeom= 7 << tgeom << 7 geomlimit= " << geomlimit
i << " tlimit= " << tlimit << " presafety= " << presafety << Gdendl:

// shortcut
if ({tPathLength < tlimit) && (tPathlLength < presafety))
return tPathLength:

Gd4double thnow = tlimit:
// optimization ...

if(geomlimit < geombig) tnow = max(tlimit.facsafety®*geomlimit):

// step reduction near to boundary
if(smallstep < skin)




I T WSRO gl

if(geomlimit > skindepth)
{
if(tnow > geomlimit—0.999#%skindepth)
thow = geomlimit—0.999%skindepth:
¥
else
{
insideskin = true:
if(tnow > stepmin) tnow = stepmin;
s
¥

if (tnow < stepmin) tnow = stepmin;

if(tPathLength > tnow) tPathLength = tnow ;
s
// for 'normal' simulation with or without magnetic field
// there no small step/single scattering at boundaries
else if{steppingfilgorithm == fUseSafety)
{
[ | 77 compute presafety again if presafety <= 0 and no boundary
// i.e. when it is needed for optimization purposes
if({stepStatus 1= fGeomBoundary) && (presafety < tlimitminfix))
presafety = safetyHelper—->ComputeSafety(sp—>GetPosition()):

// is far from boundary
if (currentRange < presafety)
{
inside = true;
return tPathLength:
¥

if({stepStatus == fGeomBoundary) || (stepNumber == 1))




Conclusions/Discussion

Why are we comparing doubles?

Sometimes safety is un-initialised (old
transportation/navigation?), which means even comparing
with zero is a hazard...

The SteppingManager max(double-double, 0) causes real
reproducibility issues

64UrbanMscModel baffles me completely:

- Fixed geometrical values (with no reference to
scalability/geomtry size)

- Safety compared against internal values - why?
- AtBoundary definition doesn't appear to be concrete
Caching of safety vs. SafetyHelper vs. local copies

should be consistent.. Otherwise it can get carried over
from the previous event!

Verbosity displays a number of safety values which are
small but non-zero ¢(10-12) - why?
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