Calculation of elastic and inelastic ion-ion cross-sections

Mikhail Kosov, 12th Geant4 Workshop (GB, Sep.2007)

First CHIPS R&D for Ion-Ion interactions

- Prepare for nuclear/hypernuclear transport
 - ☐G4QIonIonCrossSection can be used for nuclear fragments and hyperfragments:(Z,N,L)=(Z,N+L,0).
 - ☐ G4QLowEnergy for inelastic ion-ion interactions.
- For heavy ions the elastic par is about 45%
 - \square G4QIonIonCrossSection provides σ_{el}/σ_{tot} ratio.
 - ☐ G4QIonIonCrossSection provides **t** for elastic
- High energy inelastic interactions are needed
 - □ CHIPS G4QHighEnergy class (to be developed)

Preliminary solution for Ion-Ion XS

- Glauber calculations have been done for AA elastic and total cross-sectioins
 - □ A: D, He, Li, Be, C, Al, Cu, Sn, Pb, U (no H)
- Calculated cross-sections have been fitted
 - \square Parameterization of $\sigma_{tot}(A_1,A_2)$ cross-sections
 - \square Parameterization of $\sigma_{el}/\sigma_{tot}(A_1,A_2)$ ratios
- In future measurements should be collected and the found parameterization formulas should be tuned to the data.

Momentum Dependence of σ_{Tot} for different AA combinations

M.Kosov. Ion-Ion Cross-sections

Momentum dependence of $\sigma_{\text{Elastic}}/\sigma_{\text{Tot}}$ Ratio for different AA combinations

Simulation of elastic cross-section

- Ion-Ion elastic cross-section is very forward
- With good accuracy the t-distribution is energy independent
 - □ For mean squared radius <R²> the nuclear form-factor can be calculated as $F_A(t) = e^{<R2>t/6}$
 - □ With the diffraction cone parameter is B (it is energy dependent, but B << <R²>/3+<r²>/3, where r and R are radii of target and projectile):

$$d\sigma/dt = C \cdot e^{(B+\langle R2 \rangle/3 + \langle r2 \rangle/3)t}$$

Conclusion

- CHIPS is prepared for the Ion-Ion transport
- As an SU(3) package CHIPS supports hypernuclei
- Interaction cross-sections are provided
- Ion-Ion elastic scattering is already supported for all energies, providing a narrow diffractive cone
- Low energies inelastic interactions of the most of the nuclear fragments are already supported
- High energy inelastic interactions must be implemented in SU(3) form.