Study of Multiplicity in Geant4 Hadronic Models

Dennis Wright Geant4 Collaboration Meeting 17 September 2007

A Reminder of the Problem

- CMS reports too much energy deposited by Geant4 in PbWO₄ crystals at incident π energies below 10 GeV
 - see slide 3
- charged particle spectra are too hard and show a bump or shoulder at 5-9 GeV
 - see slide 3
- nucleon multiplicities at first interaction point are not monotonically increasing with energy, but instead vary widely
 - see slide 4

HCAL Alone

TB2006 Data

G4 (6.2, 7.1) for TB2004 setup

Seen in sampling calorimeter! Energy spectrum also too hard?

QGSP-BERT pi-/pi0 Multiplicity of Secondary Particles at First Interaction Point pi+ ion **QGSP-BERT QGSP** Multiplicities of secondary particles at V1 Multiplicities of secondary particles particles event Beam Energy [GeV] particles/event neutrons neutrons 🖶 + pi+ pi-+ piO ⇒ pi0 ion ion - heavy heavy pi0 pi+ ion 10 pi-/pi0 pi+ ion Beam Energy [GeV] Beam Energy [GeV] 10 10

Too much neutrons / protons / ions ?

Multiplicities of secondary particles at V1 (QGSP_BERT)

pi/e TB HB2 vs G4 LHEP (no Birks law)

Examining the Models

- Physics lists used by CMS:
 - QGSP, QGSP_BERT
- Examine problem by looking at individual models used in the physics lists. For pions below 12 GeV:
 - QGSP physics list is LEP
 - QGSP_BERT physics list is BERT for 0 9.9 GeV, LEP for 9.5 12 GeV LEP
 - Also look at FTFP, QGSP models and Dubna cascade
- Plot produced particle multiplicities for each model
 - process-level test, so only one interaction/event

Multiplicity vs. π^- KE for p, n, π^+ , π^0

Comments on Multiplicity Plots (1)

• Pions:

- all models, except LEP above 15 GeV, produce monotonically increasing numbers of pions vs. energy
- this is expected, although numbers vary significantly with model

Nucleons

- cascades increase rapidly with energy, then plateau
- LEP model rises rapidly up to 4 GeV, then drops and levels off
 - rise and fall due to protons with p < 1 GeV/c
- this reproduces the CMS QGSP result for first interaction point
- the sharp transition seen in QGSP_BERT is also explained by switching from the Bertini curve to the LEP curve over the range 9.5 to 9.9 GeV

Comments on Multiplicity Plots (2)

- According to conventional wisdom, there should not be a drop in nucleon multiplicity
- In LEP there is a reason given for the dip (Fesefeldt's tech. note)
 - formation zone
 - absorption of nucleons on "heavy molecules"
 - removing these corrections makes LEP look qualitatively like a cascade model (no drop, a monotonic increase of multiplicity)
- Any joining of cascade with string model in Geant4 will produce such a drop
- Is the drop real?
- Look for data

Neon Bubble Chamber (thin target) Data

- 10.5 GeV/c $\pi^{+/-}$ on Ne
 - W.M. Yeager et al., Phys. Rev. D16, 1294 (1977)
- average multiplicities measured for p, $\pi^{+/-}$
 - deduced for n, π^0
- Compare to Bertini, LEP, FTFP
 - slide 10
- Other thin target data at 6, 9 GeV, from emulsions are ambiguous
- Thick target data exists, but not as helpful

Comments on Neon Comparison

Nucleons

- LEP: good agreement

- FTFP: too low

- Bertini: too high

• Pions

- FTFP: good agreement

- LEP: too high

- Bertini: too low

Reasons for the Rise and Fall of Multiplicities with Energy

- Test: for Bertini and FTFP models, look at multiplicities for particles with p > 0.5 GeV/c
 - energy region 5 < E < 9 GeV (where the models overlap)

• Result:

- nucleon multiplicities agree well for both Bertini and FTFP over this range
- without momentum cut nucleon multiplicity in Bertini is 2-3 times that of FTFP

• Conclusion:

- rise and fall are due to low energy particles only
- not the case for LEP models

Discussion

- The single data point at 10.5 GeV/c indicates that Bertini has too many low energy nucleons, while FTFP (and probably QGSP) has too few
- If data point is correct AND there is no real drop in multiplicities with energy, then Bertini and LEP both have too many low energy nucleons
 - would confirm CMS result
- Would be useful to be able swap precompound models
 - use G4PreCompound in Bertini, etc.
 - could then see which model is at fault

Conclusions

- We reproduce the rise and dip in proton multiplicities seen at the first interaction point by CMS
- The rise and fall in QGSP is due to parameterizations in LEP
- The rise and fall in QGSP_BERT is due to the transition from Bertini to LEP over the range 9.5 < E < 9.9 GeV
 - the same behavior would occur in coupling Bertini to either QGSP or FTFP models
- Widening the transition between Bertini and LEP from 9.5-9.9 GeV to 5.0-9.9 GeV (QGSP_TRV) will smooth out the abrupt change in multiplicities but there will still be a decrease with energy
- Cascades too high above 5 GeV? String models too low?
 Precompound model too low?