Bertini Cascade Problems and Fixes

Dennis Wright Geant4 Collaboration Meeting 17 September 2007

Outline

- Problem Report #896
- 4 GeV/c and 10 GeV/c proton scattering validations
- Angular distribution questions

Problem Report # 896

• 4 GeV/c protons on Be

- two proton invariant mass shows a large peak at ~3.1 GeV
- corresponds to p-p elastic scattering in CM
- same thing not seen in Binary cascade

p + Be: Two-proton Invariant Mass

p + Be: Two-proton Invariant Mass

Fix: Remove Quasi-elastic Scattering

- Modified classes:
 - G4IntraNucleiCascader
 - G4ElementaryParticleCollider
- If there is only one projectile-nucleon reaction within nucleus, and reaction is elastic, reject event and try again

Two-proton Invariant Mass with Quasielastic Scattering Removed

Problem

- Invariant mass spectrum still does not look like that from Binary cascade
 - is there quasi-elastic in binary cascade?
 - should some quasi-elastic remain in Bertini to make it look like binary?

High Energy "Bump" in Proton Inealstic Scattering from Nuclei

- Validations at 4, 10 GeV/c show large discrepancy with data for several nuclei
 - effect is largest at most forward angles
 - cause at first thought to be quasi-elastic scattering
 - now know to be a parameterization problem

10 GeV/c ITEP Data: p + C, 0 – 60 deg Black: original Bertini, Red: fix

10 GeV/c ITEP Data: p + C, 60 –180 deg Black: original Bertini, Red: fix

4 GeV/c KEK Data: p + Pb, 45 – 90 deg Black: original Bertini, Red: fix

Fix?

- Change nucleon-nucleon angular distribution
 - new angular distribution: exp(-t) for KE > 2.4 GeV
 - original angular distribution: much less forward-peaked up to 10 GeV
- Change works well for 0 60 deg at 4 and 10 GeV/c
- For 60 180, original may be better
- Conclusion:
 - tune existing angular parameters
 - change parameterization only for 0 60 degrees

More Angular Distribution Problems?

- Final state angular distributions do not look correct
 - discontinuities vs energy
 - un-naturally cut-off spectra
 - strange distribution shapes

Bertini Angular Distributions at Various Collision Energies

