

Recent CHIPS implementations

Mikhail Kosov, 12th Geant4 Workshop (GB, Sept. 2007)

<u>Plan</u>

- New default CHIPS physics in Geant4 8.3/9.0
 - ☐ **G4QElastic** for protons and neutrons
 - □ Quasi-Elastic (G4QuasiFreeRatios) in FTF/QGS
 - □ New muon-capture (G4QCaptureAtRest)
- New processes not yet in the default physics
 - Muon-nuclear interaction process (G4QCollision)
 - □ Tau-nuclear interaction process (G4QCollision)
 - \square A(ν,μ): neutrino-nuclear interaction process (**G4QCollision**)
 - □ **G4QLowEnergy** process for inelastic interactions of fragments (including p & n) and hyper-fragments with nuclei
 - □ Detailed CHIPS process for pA interactions below 150 MeV

CHIPS improvement of np elastic scattering

CHIPS improvement of pp elastic scattering

CHIPS improvement of pC elastic scattering

- A part of inelastic cross-section is a quasielastic scattering (elastic scattering of the projectile on a quasi-free nucleon of nuclei)
- G4QuasiFreeRatios class provides a part of the quasi-elastic in the inelastic cross-section
- The Scatter member function provides the quasi-elastic scattering on the basis of Elastic
- The CHIPS quasi-elastic is implemented in all 8.3/9.0 FTF/QGS Physics Lists (default)

New muon capture at rest

- The atomic muon decay is improved, using the recent calculations (Nuclear Data Tables)
- A precise approximation of the decay rate and the capture rate are provided
- Atomic e⁻/y cascade is simulated
- Spectra of protons, neutrons and fragments in the nuclear muon capture reaction are fitted using the μ→duv_μ CHIPS decay [Published in M.Kossov, EPJ A33 (2007) 7]

CHIPS:G4QCaptureAtRest(test29,µ-Ca)

11

New process for muon-nuclear reactions

- CHIPS µ-nuclear process is G4QCollision
- It is based on the generalized theory of leptonuclear interactions [M.Kossov, EPJ A14 (2002) 377]
- With respect to the old model it doubles the scattering angle of muons on nuclei and the energy transferred to the nucleus. As a result the number of produced neutrons is doubled.
- Simulates secondary $\pi \rightarrow \mu$ penetrating muons

p-dep of σ <ΔE >/A/E of μA: G4MuNuclearInteraction(o), G4QCollision(+)

p-dep of «p_T»σ/A of μA: G4MuNuclearInteraction(o), G4QCollision(+)

(ν,μ)-nuclear and τ-nuclear interactions

- The neutrino-nuclear interactions are not very important for the LHC physics simulation, but can be important for simulation of neutrino detectors. The small cross-section of vA interaction can be biased.
- The τ -nuclear interactions can be important for calculation of the τ -efficiency on 1% level

CHIPS calculation of total and quasi-elastic (v,μ) reactions

R&D of hadronic CHIPS processes

- First steps of the hadronic CHIPS project have been done:
 - □ G4QEvaporation class making an isotropic final evaporation of excited residual nuclei
 - □ It was used in the G4QLowEnergy class, which can be applied for inelastic interactions of low energy fragments and hyper-fragments
 - CHIPS cross-sections for nucleon-nuclear and nuclear-nuclear interactions have been fitted
 - □ Hadronic **G4QCollision** inelastic process is made for **pA** and **nA** interactions in the precompound energy range ($E < m_{\pi}$)