Neutron Benchmarks - TARC

- 1. TARC Experiment (recap)
- 2. Energy-time (recap)
- 3. Fluence (revised and corrected)
- 4. Thin target (recap)
- 5. Radial Fluence distributions (new)
- 6. Future work
- 7. Summary

Alex Howard, CERN

Neutron Benchmarks - TARC

Geant4 Users Workshop Hebden Bridge 17th September 2007

The TARC Experiment

- Neutron Driven Nuclear Transmutation by Adiabatic Resonance Crossing (Cern 96-97)
- 2.5 or 3.5 GeV/c proton beam.
- 334 tons of Pb in cylindrical
 3.3m x 3.3m x 3m block.
- The lead is 99.99% pure.
- Beam enters through a 77.2mm diameter blind hole, 1.2m long.
- 12 sample holes are located inside the volume to measure capture cross-sections on some isotopes.

TARC – experimental set-up

Geant4 Physics Modelling

- The Geant4 BERTINI and BINARY cascade physics models were chosen for simulating hadron production
 - Both of these include nuclear de-excitation models
- The low energy neutron_hp package was used below 20 MeV
 - Neutron interaction
 - Transportation
 - Elastic scattering
 - Capture
- Other "standard" Geant4 processes are included for elastic, electromagnetic, stopping
- Using physics lists QGSP_BERT_HP and QGSP_BIC_HP

TARC simulation – single event 3.5 GeV/c proton on natural lead

TARC original simulation FLUKA and custom transport

Geant4 – Bertini Cascade neutron_hp

Neutron Energy-Time Correlation

- A first test of neutron transportation in Geant4 is to look at energy-time correlation
- This relies heavily on the high precision neutron_hp model for neutrons < 20 MeV
- Neutron energy and time are stored for the flux through a given radial shell
- Reasonable agreement with expectation, although the low energy population is quite different between physics list (as expected)

Fluence Calculation

- In the TARC analysis they use a definition of fluence as follows:
 - For monoenergetic neutrons of velocity V and density n, the neutron flux is defined as $\phi = Vn$ and is a quantity that upon multiplying by the macroscopic cross-section (Σ), one obtains the neutron reaction rate per unit volume
 - Should not be confused with the rate of particles crossing a surface element, which is a 'current' and depends on the orientation of the direction of the particles
- Three procedures were used to determine the fluence:
 - 1) dN/dS_{perp} is the number of neutrons crossing a surface element dS, with dS_{perp} = $dScos\theta$ where θ is the neutron angle to the normal
 - 2) the average fluence in a volume element dV as dI/dV, where dI is the total track length of neutrons in dV
 - 3) Number of interactions in a detector and computing fluence as $(1/\Sigma)dN/dV$, where dN is the number of interactions in dV
- The first two were used in simulation

TARC Fluence – old (circa Lisbon 2006)

- Spectral fluence is determined from the energytime correlation with crosschecks (lithium activation and He3 ionisation detectors)
- The BERTINI cascade gives most simulated neutrons
- The spectral shape looks reasonable and similar between two cascades
- Normalisation in progress
 (how many neutrons produced with higher energy off-scale)

Fluence Revision

TARC data are unbinned

- E dF/dE
- Measure counts in bin
 - > divide by bin width
 - > multiply by mean energy
- Because the bins are isolethargic my error lead to a constant scaling of 6.1975

Fluence Binary cascade

EdE/dE n/cm²/10⁹p

Yellow: sphere

• Red: cylinder

• Black: Full 4π shell

Fluence Bertini cascade

Geant 4

Alex Howard, CERN

Ratio Plots of fluence G4/Data - Bertini

- Ratio of
 4π shell : Data
- Two-sets of data
- Approximately 50-60% overestimated
- Dominated by systematic errors of experiment
- Shell approach better
- Sub-structure due to bertini?

Ratio Plots of fluence G4/Data - Binary

- Ratio of4π Shell : Data
- Approximately agrees (~15% under-estimated)
- Dominated by systematic errors of experiment

Thin Target Comparisons – Lisbon 2006

- To understand the normalisation new tests involving thin target data were looked at within the relevant energy range
- SATURNE data exist for 800MeV, 1200MeV, 1600MeV protons on lead (Leray et al PRC 65, 044621)
 - neutron multiplicity and energy imparted to neutrons
- Geant4 cascades had not been tested before above 800MeV
- Isomer gamma measurements for protons on ²⁰⁸Pb producing ²⁰⁷Pb or ²⁰⁶Pb (used to estimate # of neutrons)
 - Kawakami *et al* (Nucl. Phys. A262, 52-60) gives data for protons incident on lead at 52, 44, 36, 28, 24 MeV
 - To compare with Geant4 requires scaling with the number of isomeric states (normalisation)
- Precompound tests at these low energies were also limited

SATURNE Neutron multiplicity (2006)

- First band is 0-2MeV
 Neutron Energy Bin
- Second is 2-20MeV
- Third is >20MeV

SATURNE Energy imparted to neutrons (2006)

 Sum of kinetic energy carried by neutrons per interaction

Black = dataRed = G4 BERTINI

Blue = G4 BINARY

- First band is 0-2MeV
 Neutron Energy Bin
- Second is 2-20MeV
- Third is >20MeV

Cross-section isotope production

- low energy (16-52MeV) protons on ²⁰⁸Pb
- Experimental data is purely isomer gamma-line
- The measured cross-section was scaled by the number of isomeric states (estimate)
 - Lower limit for cross-section

Experimental errors were quite large (+/- 25%)

Radial Fluence Distributions

- TARC measured the radial dependence of the neutron fluence in order to measure the slowing down within the lead volume
- By using coupled transportation a series of parallel shell volumes were created at different radii

Radial Fluence Distribution - BINARY

Radial Fluence Distribution - BERTINI

Future Work

- True Calorimetry
- Capture and transmutation on Tc, I
- Precision runs
- Complete radial distributions
- Sensitivity to lead isotopes and impurities (e.g. silver)

Summary

- The TARC simulation agrees very well with the data
- Neutron energy-time distribution is slightly short, but within the experimental errors
- The fluence vs. energy is now in agreement (including systematic errors)
- There appears extra fine structure due to neutorn_hp?
- The binary and bertini cascades appear either side of the data – as in thin target, but binary is in best agreement (for once)
- Radial distributions agreement is not perfect, needs further investigation
- Nonetheless fluence agreement at 45.6cm is very encouraging

Spare slides

Neutron Energy-Time Correlation

Neutron Energy-Time Correlation

The slope of the correlation can be approximated by a Gaussian distribution

periment and ARC simulation gave 173±2

It is possible to fit the correlation according to:

$$E(t) (t+t_0)^2 = \int K$$

where to is a correction for non-infinite initial energy

·The (small) difference between BINARY and BERTINI can be attributed to a harder neutron spectrum with BINARY

Motivation

- The production, interaction and transport of neutrons is important in a number of applications:
 - Background radiation studies
 - Radiation effects (single event upsets in electronics)
 - Background and spill-over (LHC experiments)
- Validation with TARC offers testing Geant4 physics over a broad energy and process range
 - Neutron production from ~GeV protons
 - Secondary neutron production
 - Thermalisation and capture
 - Absolute fluence measurement

