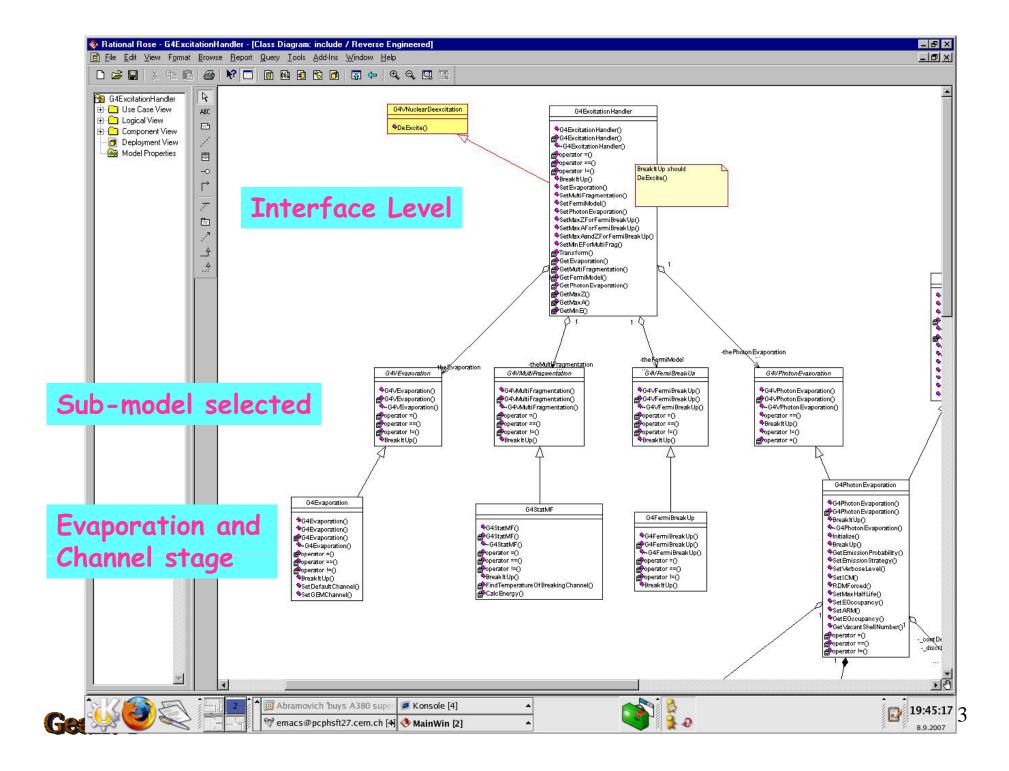
Precompound/De-excitation Interfaces

- 1. Design
- 2. Interface vs. handling
- 3. Example of mis-using probability
- 4. Changes from Jose Manuel Quesada to Precompound
- 5. Summary

Alex Howard, Gunter Folger CERN


Precompound/De-excitation Interfaces

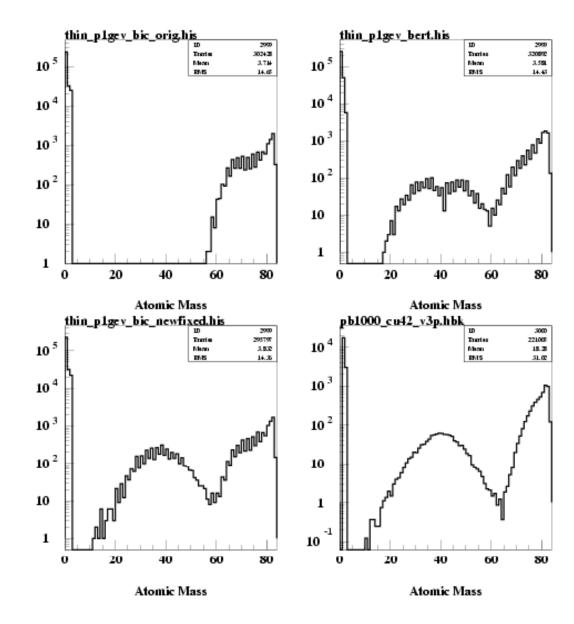
Geant4 Users Workshop Hebden Bridge 17th September 2007

Design

- After looking at the design for the pre-compound and deexcitation with relevant handling there appears no reason to change it
- It is not a unique solution, but certainly adequate
- Care has to be made about sub-channels and their respective probability (it's competitive)
- It is intrinsic that channels are in competition
- The choice of channel is no longer an interface (at that level) but actually a sub-model
- This is where we were getting confused at the PreCompound workshop
- In choosing evaporation over gamma de-excitation or fission is not simply choosing an interface, the probability has to be handled in a consistent and coherent manner

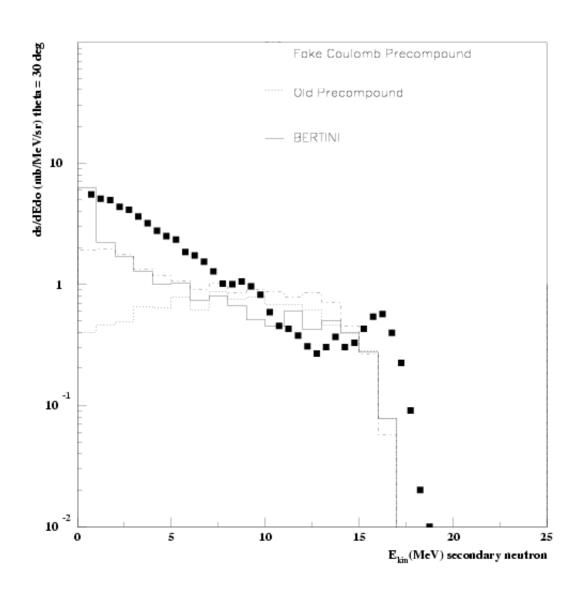
Design (continued)

- The interface enters the top-level of the model
- Sub-models are selected on the basis of criteria (target A,Z; excitation energy etc...)
- Probability only enters into the channel selection
- Handler is also required
- Evaporation is dependent on all of the above


Interface to PreCompound (from mini-workshop)

- Main topic was the interface to 'precompound' like models
- Agreement:
 - Use Class (similar) to G4Fragment:

 - Also used in interface for deexcitation:
 G4ReactionProductVector * BreakItUp(const
 G4Fragment &theInitialState) const;
- Extension of G4Fragment with vector of exciton momenta could be made (no model using this, some associated over-head)


Fission given a chance:

- A bug was found in the fission channel probability which made it negative
- Not only did this suppress fission completely it also produced more gammas due to a reduction in the total evaporation probability

Fake Improvement

 Double-counting the Coulomb barrier suppressed all charged fragments and correspondingly increased the neutron yield

Bugs in PreCompound/Deexcitation?

- Jose Manuel Quesada (first talk) identified a number of features and bugs in the implementation of PreCompound within Geant4
- Some of these fixes have been implemented with small improvements to the thin target validation
- However, it's not clear we're being completely consistent, particularly with combinatoric/picking factors (R_j)
- Further work needed...

Pauli blocking and other fixes from JMQ:

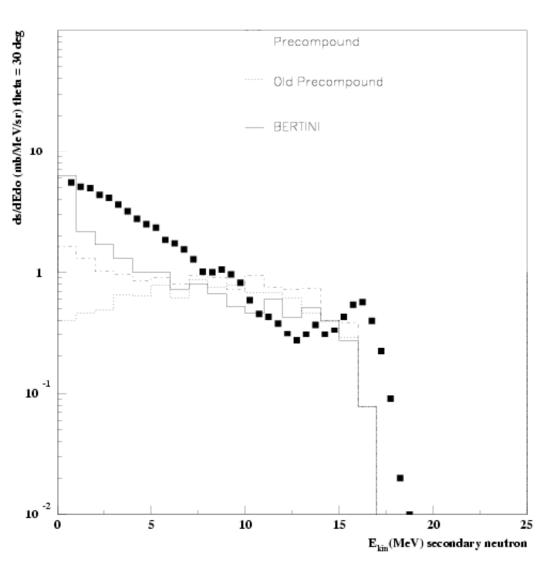
Present situation Further development: For the future?: Documentation
Griffin model, Exciton model, SMIS...
Basic formulation
Items to be clarified

Bugs in the coding?

- Bad implementation of Pauli correction factor in several places
- ► For instance, in method ProbabilityDistributionFunction of class G4PreCompoundNucleon what should be calculated (CEM):

$$\frac{\omega(p-1,h,E-B_j-T)}{\omega(p,h,E)} = p(n-1) \left[\frac{(g_1(E-B-T))}{g_0 E} \right]^{n-2} \frac{1}{E} \frac{g_1}{g_0^2}$$

BUT what is calculated is:


$$\frac{\omega(p-1, h, E-B_j-T)}{\omega(p, h, E)} = p(n-1) \left[\frac{(g_1(E-B-T-A(p-1, h)))}{g_0(E-A(p, h))} \right]$$

with

$$A(p,h) = \frac{p^2 + h^2 + p}{4} - \frac{h}{2}$$

R_j factors/Combinatorics

 With R_j factors included, the heavier fragments (alpha, D, T) are suppressed which increases the low energy yield of neutrons

Summary

- The design of PreCompound/De-excitation seems fundamentally okay
- Although it could be changed it's not clear there's any gain at this stage
- It's important to realise the dependent nature of channel selection, sub-model and evaporation fragment within the de-excitation stage
 - This has to be consistent and coherent
- G4Fragment (in) and ReactionProductVector (out) is sufficient for the models we have in Geant4 at the moment
- In the future an exciton vector may be required to be included as an extension, if new models become available that require lorentz invariance...

Spare slides

Discussion Tuesday 17 July

- Main topic was the interface to 'precompound' like models
- Agreement:
 - Use Class (similar) to G4Fragment:

 - Also used in interface for deexcitation:
 G4ReactionProductVector * BreakItUp(const
 G4Fragment &theInitialState) const;

- Ctor to create a fully specified fragment
- Less Set.. than current implementation
- G4Fragment has Get... for
 - Int A,Z mass number and charge (NOT double)
 - Excitation energy; NO Set...
 - Number of excitions, particles, charged particles, holes;
 note excitions=particles+holes
 - Momentum
 - Secondaries of previous phase (const ReactionProductVector * const)

• Ctor:

- G4Fragment(const G4int A, const G4int Z, G4int Holes, G4int Particles, G4int Charged, const G4LorentzVector aMomentum, const G4ThreeVector * AngularMomentum, const G4ReactionProductVector * const);
- G4Fragment(const G4int A, const G4int Z, G4double excitationEnergy, const G4ThreeeVector *
 AngularMomentum=0);
- G4Fragment(const G4ParticleDefinition *,G4LorentzVector & aMomentum);

Get Methods

```
    G4int GetA(void) const;
    G4int GetZ(void) const;
    G4double GetExcitationEnergy(void) const;
    const G4LorentzVector GetMomentum(void) const;
    const G4ThreeVector GetAngularMomentum(void) const;
    void SetAngularMomentum(const G4ThreeVector value);
    G4int GetNumberOfExcitons(void) const;
    G4int GetNumberOfHoles(void) const;
    G4int GetNumberOfCharged(void) const;
    void SetNumberOfCharged(const G4int value);
    G4int GetNumberOfParticles(void) const;
    G4ParticleDefinition * GetParticleDefinition(void) const;
    G4double GetCreationTime(void) const;
    void SetCreationTime(void) const;
```



```
    // Some utility methods
    inline G4double GetGroundStateMass(void) const;
    inline G4double GetBindingEnergy(void) const;
    #ifdef PRECOMPOUND_TEST
        G4String GetCreatorModel() const { return theCreatorModel; }
        void SetCreatorModel(const G4String & aModel)
        { theCreatorModel = aModel; }
        #endif
```