The Light Reflection Simulation in Geant4

Cláudio Silva, José Pinto da Cunha
Vitaly Chepel, Américo Pereira
Vladimir Solovov, Paulo Mendes
M. Isabel Lopes, Francisco Neves

The Light Reflection Simulation in Geant4

Cláudio Silva LIP University of Coimbra 12th Geant4 Collaboration Workshop, Hebden House, Hebden Bridge (UK), 13-19 September 2007

Introduction

- The correct simulation of the reflectivity of the detector's inner surfaces is important to describe the observed phenomena
- Some materials exhibit a reflection profile involving different types of refection (specular, diffuse, backscattering)
- The reflection profile for each material depends of the surface finish and the λ of the incident light

Overview

- Measurements of the reflected VUV light for PTFE, Copper and Glass
- Simulation of the experimental results using Geant4
- Modeling the specular and diffuse refection
- The Fit to the experimental results
- The proposed model to the Geant4 simulation

The Experiment

- The incident light is from the xenon scintillation light $(\lambda=175 \mathrm{~nm})$
- The measurements are performed in a controlled environment (argon atmosphere)
- Measurements were made for copper, glass and PTFE
- Data was taken changing the angles θ_{i}, θ_{r} and ϕ_{r}.

The Geant4 optical simulation

- Geant4 has two different models Glisur and Unified
- The Glisur model has two parameters (polishment and reflectance)
- The Unified Model depends of the interface
- Dielectric - Dielectric
- Dielectric - Metal

The Dielectric - Metal Interface

- The user introduces two parameter the reflectance of the surface and the surface roughness

The Dielectric - Metal Interface

a and b are for two different oxidations of the copper sample

The Dielectric - Dielectric Interface

- The Geant4 simulation uses three parameters $n, W_{D} / W_{L}, \sigma$
- The values of the parameters were tunned so that the Geant4 simulation approaches our measurements
- The predicted reflectance is given by the number of reflected photons over to the number of incident photons

The Dielectric - Dielectric Interface

PTFE Measurements

but the reflectance obtained from the Geant 4 simulation is not realistic:

θ_{i}	30°	45°	65°
R	8%	10%	25%

The Dielectric - Dielectric Interface

MICROFACET NORMAL

The Dielectric - Dielectric Interface

- Geant 4 looks at $\vec{I} \cdot \hat{n}<0$ to test but fails to
verify effects such

- In general $R=R[F(\theta, n, \kappa)]$
- The lambertian component is proportional to the specular reflection

$$
I_{L}=L \cdot F\left(\theta_{r}^{\prime}, n\right)
$$

Reflection Models in the Literature

- Oren Nayar: diffuse reflection - caused by the surface roughness
- Wolf: diffuse reflection - caused by internal scattering
- Torrance-Sparrow: specular reflection
- Combined Model: diffuse plus specular reflection

The Oran-Nayar Model

- Is intended to describe the diffuse lobe
- Models the surface as a set of V-shaped cavities
- The width of each facet is small compared to its length
- The roughness of the surface is specified using a probability distribution function for the facet slopes
- The facet area is large enough compared with the λ of the incident light
- Reffection in each facet is purely lambertian

The Oran-Nayar Model

$$
\begin{aligned}
L_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}, \sigma\right)= & L_{i} \frac{W_{D}}{\pi} \\
& \times\left(A+B \cdot \max \left\{0, \cos \left(\phi_{r}-\phi_{i}\right)\right\}\right. \\
& \times \sin (\gamma) \tan (\beta))
\end{aligned}
$$

$$
\begin{aligned}
A & =1.0-0.5 \frac{\sigma^{2}}{\left(\sigma^{2}+0.33\right)} \\
B & =\frac{0.45 \sigma^{2}}{\left(\sigma^{2}+0.009\right)} \\
\gamma & =\max \left\{\theta_{i}, \theta_{r}\right\} \\
\beta & =\min \left\{\theta_{i}, \theta_{r}\right\}
\end{aligned}
$$

Combined Model for Diffuse

Reflection

- Both models are complementary in their applicability to surfaces with different roughness properties
- Surfaces with a intermediated roughness exhibits a combination of effects produced by both internal scattering and external roughness
- The two models can be joined together making the assumption that each V-groove micro-facet reflects according the Wolf model replacing the factor A by
$C=A\left[1-F\left(\theta_{i}, n, \kappa\right)\right] \times\left\{1-F\left(\sin ^{-1}\left[\left(\sin \theta_{r}\right) / n^{\prime}\right], 1 / n^{\prime}\right)\right\}$

The Torrance Sparrow Model

- Planar micro-facets oriented according a distribution $D\left(\alpha_{r}, \sigma_{r}\right)$
- The reflection in each micro-facet is specular
- The Fresnel Factor $F\left(\theta_{r}^{\prime}, n, \kappa\right)$ introduces polarization dependence
- The shadowing and masking effects are accounted for by the geometrical attenuation factor, G

The Torrance Sparrow Model

$$
L_{r}=W_{s} \frac{F\left(\theta^{\prime}, n, \kappa\right) G\left(\theta_{i}, \theta_{r}, \phi_{r}\right) D\left(\alpha_{r}, \sigma\right)}{4 \cos \theta^{\prime}}
$$

- W_{s} is the weight factor for the specular lobe
- $F\left(\theta^{\prime}, n, \kappa\right)$ are the Fresnel equations for the absorbing media
- $G\left(\theta_{i}, \theta_{r}, \phi_{r}\right)$ is the geometrical attenuation factor
- $D\left(\alpha_{r}, \sigma_{r}\right)$ is the micro-facet distribution function

The Combined Model

$$
\begin{aligned}
L_{r} & \frac{W_{D}}{\pi} \times\left(C+B \cdot \max \left\{0, \cos \left(\phi_{r}-\phi_{i}\right)\right\} \times \sin (\gamma) \tan (\beta)\right) \\
& +W_{s} \frac{F\left(\theta^{\prime}, n, k\right) G\left(\theta_{i}, \theta_{r}, \phi_{r}\right) D\left(\alpha, \sigma_{r}\right)}{4 \cos \theta^{\prime}}
\end{aligned}
$$

where C is:

$$
C=A\left[1-F\left(\theta_{i}, n, \kappa\right)\right] \times\left\{1-F\left(\sin ^{-1}\left[\left(\sin \theta_{r}\right) / n^{\prime}\right], 1 / n^{\prime}\right)\right\}
$$

the reflection distribution function depends of 5 parameters $L_{r}=L_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}, \kappa, n, W_{D}, W_{S}, \sigma_{r}\right)$

The Fit

$$
\begin{gathered}
\mathbf{x}=\left[\theta_{i}, \theta_{r}, \phi_{r}\right] \\
\mathbf{p}=\left[W_{D}, W_{S}, n, \kappa, \sigma\right] \\
\min \sum_{\mathbf{x}} \frac{\left(I(\mathbf{x})-L_{r}(\mathbf{x}, \mathbf{p})\right)^{2}}{\sigma_{I(\mathbf{x})}^{2}}
\end{gathered}
$$

- The results were fitted with this model
- We used a genetic algorithm to find the minimum

The Fit

- A global fit was performed
- Number of data points used: $2439 \mathrm{x}=\left\{\theta_{i}, \theta_{r}, \phi_{r}\right\}$
- Number of fitted parameters: 5

$$
\mathbf{p}=\left\{W_{D}, W_{S}, n, \kappa, \sigma\right\}
$$

- The micro-facet distribution $D\left(\alpha, \sigma_{r}\right)$ was considered Lorentzian

$$
D\left(\alpha, \sigma_{r}\right)=\frac{1}{\alpha^{2}+\left(\frac{\sigma_{x}^{2}}{2}\right)^{2}}
$$

- Fit results: $\mathbf{p}=\left\{W_{D}, W_{S}, n, \kappa, \sigma\right\}=$ $\{0.00145,0.032,1.09,0.41,0.072\} \chi^{2} \simeq 10$

The Results

Proposed model for the Geant4

Mirror reflections

- For High Refectances: R constant
- For $\kappa \lesssim \frac{1}{2 \pi}: R\left[F\left(\theta^{\prime}, n\right)\right]$
- For $\kappa \gtrsim \frac{1}{2 \pi}: R\left[F\left(\theta^{\prime}, n, k\right)\right]$

Proposed model for the Geant4

specular lobe plus diffuse lobe

The user has to provide five parameters

$$
\mathbf{p}=\left\{W_{D}, W_{S}, n, \kappa, \sigma\right\}
$$

the function L_{r} is sampled in the simulation,

$$
\begin{aligned}
L_{r}= & \frac{W_{D}}{\pi}\left(C+B \times \max \left\{0, \cos \left(\phi_{r}-\phi_{i}\right)\right\} \times \sin (\gamma) \tan (\beta)\right. \\
& +W_{s} \frac{F\left(\theta^{\prime}, n, \kappa\right) G\left(\theta_{i}, \theta_{r}, \phi_{r}\right) D\left(\alpha, \sigma_{r}\right)}{4 \cos \theta^{\prime}}
\end{aligned}
$$

Proposed model for the Geant4

Radiance $L\left(\theta_{i}, \theta_{r}, \phi_{r}, \mathbf{p}\right)$
Integration in $\left(\theta_{r}, \phi_{r}\right)$
Reflectance $R\left(\theta_{i}\right)$

$$
\begin{gathered}
R\left(\theta_{i}, \mathbf{p}\right)+A\left(\theta_{i}, \mathbf{p}\right)+ \\
T\left(\theta_{i}, \mathbf{p}\right)=1
\end{gathered}
$$

Refraction or Absorption

Reflection
 $L\left(\theta_{i}, \theta_{r}, \phi_{r}, \mathbf{p}\right)$
 Choose θ_{r} and θ_{i}

Preliminary results obtained with the proposed model

Conclusions

- Geant4 simulation was compared with our light measurements.
- A new model for refkection by rough surfaces was considered.
- The new model was added to the Geant4 simulation. It seems to describe closely our measurements.
- This work is still going on.

