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Figure 3.1: Classicaltwo-particle scattering; (a) in laboratory coordinates,and (b) in
barycentric coordinates. v, v1, v2 and vc are the velocity in the laboratory reference
frame of, respectively, the incident particle beforeand after the collision, the target
particle (assumedinitially at rest) after the collision, and the center of massof the
two particles.

potential energy.

The energyT transferred by the incoming particle with energyE to the target

particle is a result of elastic-collisiontheory (seefor exampleRef. [81]) dictated by

the conservation laws of energyand (longitudinal and transversal) momentum

T = ! E sin2 !
2

(3.2)

where ! is the scattering angle in the center-of-massframe of referencefor the two

particles (Fig. 3.1), and

! =
4M1M2

(M1 + M2)2
(3.3)

is the energy-transfercoe" cient. M1 and M2 are the atomic massesof, respectively,

the projectile and the target particle. In order to get the cross-section for the energy

transferred, the probability for each Þnal scattering angle is needed.

To obtain the details of the scattering tra jectory, a static, central-force potential

36

Note: the p r imary par t icle is a lr eady a 
recoil, doesnÕt mat ter i f i t o r iginated fr om 
WIMPs or n eutr on scat t er ing

recoil CUT energy (default MinKin et icEnergy = 10eV)
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the projectile and the target particle. In order to get the cross-section for the energy

transferred, the probability for each Þnal scattering angle is needed.

To obtain the details of the scattering tra jectory, a static, central-force potential
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Note: the p r imary par t icle is a lr eady a 
recoil, doesnÕt mat ter i f i t o r iginated fr om 
WIMPs or n eutr on scat t er ing

recoil CUT energy (default MinKin et icEnergy = 10eV)

Physics list:
¥ Intr oduced a new physical p rocess for 

the r ecoils
¥ Had t o make some changes t o 

G4hLowEnergyI onisat ion:
★ donÕt de posit T when T < CUT
★ changed CUT fr om Tp t o T
★ SetNuclearSt oppingOff() is man dat ory

➡compet it ion between t otal energy u lt imately g iven 
t o electr ons and energy per manentl y l ost t o recoils

code str uctu re based on #-el ectr ons 
emission, ßuorescence and at om 

deexcitat ion of G4hLowEnergyI onisat ion 
and on the c ont inous phot on generat ion 

in G4Cerenkov

nuclear quenching
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actua lly, we shouldnÕt e ven tr y t o 
approximate nuclear c ollisions as a 
cont inuous process (as opposed t o 
electr onic st opping) as youÕre not 

supposed t o get a r ecoil e very step, ju st 
every now and then
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Electr onic St opping Se

around the int ruder part icle due to its Coulomb
Þeld. This leads to a higher (dE / dx)e as can be
seen in Fig. 2. Finally, Ritchie considered the case
where the Coulomb Þeld isexponent ially screened,
slight ly decreasing (dE/ dx)e (see Fig. 2). The last
e! ect is of part icular relevance for ions, which
can accommodate bound states while sweeping
through the elect ron plasma. For a bare ion, a
scaling with Z 2

P to the elementary part icle case is
expected, as assumed in Fig. 2. In reality, this is
not correct and the theory was extended to a par-
t ially ionized int ruder by Ferrell and Ritchie [15],
but the determinat ion of the equilibrium charge
of a given ion remains a di" cult task. Lindhard
also independent ly invest igated this problem [1]
and, using the Thomas-Fermi theory, arrived at
a closed form for the proport ionality coe" cient .
In terms of the non-dimensional variables int ro-
duced in Eq. (1), his result can be expressed as
(d! / d" )e = #

√
! where

# =
32
3$

!
me c2

mamu c2

Z 1/ 2
P Z 1/ 2

T

Z 3/ 4

A3/ 2
t ot

A3/ 2
P A1/ 2

T

%e (2)

with %e ≈ Z 1/ 6
p (which is regarded only as an ap-

proximat ion by Lindhard) [1]. The points corre-
sponding to the project ile/ target combinat ions of
interest for the present study are also reported in
Fig. 2. Thesuppression of theelect ronicenergy loss
occurs most ly due to the part ial ionizat ion of the
int ruder. It st rongly increaseswith ZP (ZP = ZT ).

The proport ionality of (dE / dx)e with & is also
a feature of the SRIM code, allowing a value of
(dE / dx)e/ (&Z 2

P ) to be extracted (see Fig. 2).
While SRIM exceeds the LSS theory for Si, it then
decreases consistent ly below it , up to a factor of
4 for Xe. The reason for this discrepancy is un-
clear, because the details on the implementat ion
of (dE / dx)e in SRIM for low velocit ies are not
public, but it probably resides in the est imate of
the int ruder charge state. It has been veriÞed that
data for protons of comparable energies per nu-
cleon on Ar and Xe arewell reproduced by SRIM.

The big drawback of the described theoret ical
approaches is to assume that the elect ronic and
nuclear collisions are uncorrelated [1]. In reality,
the screened Coulomb repulsion between the two
interact ing nuclei makes part of the impact pa-
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Fig. 2. Proport ionality coe! cient of the elect ronic energy
loss to the part icle velocity as a funct ion of the W ignerÐ
Seit z radius r s. For ions a Z 2

P
scaling is applied.

rameter range unavailable for the scat tering of
the elect rons belonging to the target atom in the
screened Coulomb Þeld of the project ile and vice
versa. T ilinin [2] hasshown that theÞnal net e! ect
is a great decrease of Se for ! # 1, with a corre-
sponding lack of proport ionality to

√
! . His results

can also be recast in the form of Eq. (2) where %e

is replaced by a funct ion ' (! , ZP / ZT ) that can be
tabulated [2]. In the present case, his theory pre-
dicts roughly half the value of Se expected from
LSS and SRIM for Si and approximately agrees
with SRIM for Xe.

4. The full ion recoil cascade

As ment ioned, resort must be made to response
measurements employing elast ic neutron scat ter-
ing, where recombinat ion or quenching may inßu-
ence the Þnal fract ion of the total energy trans-
ferred to elect rons that is detectable as excitat ion
or ionizat ion, part icularly in the case of scint illa-
t ion yield for LXe. Theoret ically, however, an even
bigger disadvantage is present ; especially for high
Z elements: Sn dominates over Se and most of the
primary ion energy is t ransferred to nuclear re-
coils. Theknocked ion undergoesthesameprocess,
result ing in a full cascade of recoils, whose total
elect ronic energy loss must be evaluated. In the
case of the SRIM code, a second program, called
TRIM [11], readsSn and Se from the Þrst and per-
forms the computat ion. Lindhard and his group
solved numerically the transport equat ions corre-

3

Se ! v (ion velocity) if v < vF " v0Fer mi-Teller:

Lindhard: unifor m fr ee electr on gas, Thomas-Fer mi at om, par t icle-
plasma interact ion as a per tu rbat ion

0.10 < k < 0.20
(reduced units)

kXe ! 0.166

Se = kε1/ 2 if v < Bragg peak (∼ v0Z 2/ 3
1 ≈ 500M eV for Xe)

SRIM: local density 
approximat ion using 
Hartr ee-Fock solid 
state at oms; semi-

empirical Þt of c harge 
state of the io n

5 A. Mangiarot t i et a l., 2007
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