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Physics list: only rays
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particle range) it stops (default MinKineticEnergy
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Geometry:

shoot primary from the center of

B 2= box, filled with the box, random direction

pure material



S.: proton -> Al, Cu, Pb
GEANT4 (Lindhard+ICRU_R49p+Bethe-Bloch)
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Electronic stopping

low energy stopping power is parameterized
parameterization is for protons and alphas only
for other heavy ions, the stopping is scaled by:

M
7 ) _ p
Sei(T') = Zeff ' Sep(Tp)v 1y = MT
proton stopping alpha stopping effective charge
parameterizations parameterizations parameterization
ICRU_R49p Zef (v, 0F)
Zieglerl977p ICRU_R49He Ziegler, 1985,
Ziegler1985p Zieglerl977He Brandt and

SRIM2000p Kitagawa, 1982
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Geant4 low energy
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Electronic stopping
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all values are taken for v < v, ICRU_R49He Ge

Xe: v, =610 keV (4,7 keV/amu) Ziegler1977He Xe

Ar: Vg = 156 keV (4 keV/amu) Ziegler1977He Ar
Si: v, =660 keV (24 keV/amu)

Ge: v = 1.6 MeV (22 keV/amu) Ziegler1977He Si = ICRU_R49He
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ion-atom interaction potencial

7. 7oe? lim ®=1

lim &=0

T—00

r

Classical (or statistical) treatment: the Thomas-Fermi atom

Approximations:
elastic
static (velocity independent)

universal ¢ = (I)(’I“/CL)

no shell structure (as
opposed to modern Hartree-
Fock solid state models)
screening length

classical scattering /
V(r) do S, = [ Tdo

pertubation treatment

T’ = energy transfered to an atom at rest (target)
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Bohr

Thomas-Fermi — Lindhard Ziegler (ZBL) — SRIM

(LSS) (a universal fit to 522 (!) solid
Lenz-Jensen state interatomic potencials)
Moliere

Geant4

Nuclear stopping

Universal stopping in reduced units scales back fo ion-atom
dependent stopping in physical units. Available choices:

ICRU_R49 - parameterization of Molieres screening function

Ziegler1977

: { the ZBL universal potencial
Ziegler1985



Universal screening functions proposed in the literature:
Bohr
Thomas-Fermi — Lindhard Ziegler (ZBL) — SRIM
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LSS vs. SRIM vs. GEANT4
nuclear stopping S_(E), E <150 keV
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Nuclear recoil full cascade

Note: the primary particle is already a
recoil, doesn- r if it originated from

ode structure based on d-electrons
emission, fluorescence and atom
deexcitation of G4hLowEnergylonisation
and on the continous photon generation
in G4Cerenkov

eticEnergy = 10eV)

Introduced a new physical process for
the recoils
Had to make some changes to
G4hLowEnergylonisation:
dont deposit T when T < CUT
changed CUT from T, to T

Se’rwr quen®OFf() is mandatory

competition between total energy ultimately given
to electrons and energy permanently lost to recoils
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Recoil cascade

Geant4 has no nuclear recoils (at least heavy ion)
It also doesnt have the respective cross sections (neither
differential nor integrated)

Ist approximation, using only what Geant4 already has:

the recoil atom kinetic energy |
parameterized nuclear st

actually, we shouldnt even try to
approximate nuclear collisions as a
continuous process (as opposed to
electronic stopping) as youTe not
supposed to get a recoil every step, jus
every now and then

n

the so called continuous in a
loosely sense) => a continuous process
major disadvantage: very strong dependence on step size

=> an external parameter in need of fine tuning




Geant4

Nuclear quenching: Si

Si: LSS vs. SRIM vs. GEANT4 vs. exp. data
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validation of Geant4's stopping by comparing with NIST databases as well as

experimental data, in different target materials, besides SRIM and LSS)
2. The user has a total of 3x6 combinations of stopping
parameterizations at his/her disposal

3. The continuous approximation provides a good prediction
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also provides to much flexibility, by fine-tuning the
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mean free path ~ - workK in progress

do a full discrete process (for the recoils)
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Thomas-Fermi, Lenz-
Jensen, Moliere, ZBL, ect.

3 f(tl/Q)

do = lla 2t3/2 numerical integration O-(T7 TC)
put it in tables and
implement the To do: load them in Geant4,
sampling with inferpolation
write the
9 DiscreteProcess functions
T' = ~T sin? 5

Opposed to the standard method of solving the scattering integral:
SRIM/TRIM (the standard!)
M.H. Mendenhalla and R.A. Weller, An algorithm for computing screened

Coulomb scattering in GEANT4, Nuclear Instruments and Methods in Physics
Research B227, 3 (2005) 420
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Electronic Stopping Se

Fermi-Teller:|.S. o< v|(ion velocity) if v < vp ~ vg

Lindhard: uniform free electron gas, Thomas-Fermi atom, particle-
plasma inferaction as a perturbation

S. = ke'/? if v < Bragg peak (~ v9Z-'> ~ 500MeV for Xe)
010 < k < 0'20 A. Mangiarotti et al., 2007

(reduced units)
k Xe ~ 0.166

SRIM: local density

approximation using
Hartree-Fock solid
state atoms; semi-
empirical fit of charge
state of the ion
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E = initial particle energy (e.g. E, = 122keV for Co57 or Er for
recoils produced by neutrons or WIMPs)

n (E) = total energy ultimately given to electrons < E (ny = E,)
gn = NR / Er = nuclear quenching (of the recoils) < 1
But what do we actually measure in the lab ?!

Nr(ER) j Ws(E)
bR Ws(ER)

-

relative scintillation efficiency =~

—

Hitachi gives
where we redefine: ot <1

)
- W q = E. /N " now they refer to the energy
& 7/ p W g

transfered to electrons only!
, E /
R: Wg= ”'7R/ N ph and are both just functions of LET




(relative) Scintillation efficiency

Ws(E,)
Ws(ER)

dn X

Is everybody clear about this definition ?!

derivation from the traditional/experimental formula

comparison with Hitachi definition
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takes more energy
to produce a

photon in RC than

iny

2 “"quenching”
effects all
mixed up!

back
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ph

traditional /experimental definition of relative scintillation efficiency

remember
Ny = Ey

187 B,
- WS(E’Y) . Npn Npn
Ws(ER) jgﬁ nﬁz%z :
A ph rZZf tTi’rii; Zl;r
n = NR / ER

back
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