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Electr onic stopping

low energy stopping power Is parameterized
parameterization is f or protons and alphas only

for other heavy ions, the stopping is scaled by:
. \Y
Sei(T) = 2245 8Scp(Tp), Tp= WPT

proton stopping alpha stopping effective charge
parameterizations parameterizations parameterization
ICRU_RA49p Lefs(V,VF)
Zieglerl977p ICRU_R49He Zliegler, 1985,
Ziegler1985p Zieglerl977He Brandt an d

SRIM2000p Kitagawa, 1982



Se: Xe ->LXe

Geant4 low energy
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Electr onic stopping

LSS vs SRIM vs GEANT]

proportionality coefficient of S#v

[EE
o
o
o

a
M

all values are taken for v ?v
Xe: v. =610 keV (4,7 keV/amu)
Ar: v, =156 keV (4 keV/amu)
Si: V. =660 keV (24 keV/amu)

Ge: \.= 1.6 MeV (22 keV/amu)
| | | | |

F
1.5 2
Wigner-Seitz radius R [a;]

+
A
u
¢
+
A
|
*
+
A
|
*
+
A
|
*

LSS Xe

LSS Ar

LSS Si

LSS Ge

SRIM Xe

SRIM Ar

SRIM Si

SRIM Ge
ICRU_R49p Xe

ICRU_RA49p Ar

ICRU_R49p Si

ICRU_R49p Ge

Ziegler1985p Xe
Ziegler1985p Ar

Ziegler1985p Si

Ziegler1985p Ge
Zieglerl977p Xe
Zieglerl977p A ICRU_R49p
Zieglerl977p Si

Zieglerl977p G& ICRU_R49p
ICRU_R49He Xe
ICRU_R49He Ar
ICRU_R49He Si
ICRU_R49He Ge
Ziegler1977He Xe
Zieglerl977He Ar
Zieglerl977He Si ICRU_R49He
Ziegler1977He Gé ICRU_R49H€
SRIM2000p Xe

SRIM2000p Ar

SRIM2000p Si

SRIM2000p Ge




Nuclear St opping Sy

lon-atom interact ion paotencial




Nuclear St opping Sy

lon-atom Iinteract ion potencial

7 7 oe? Cdlim 1 =1
V(r) = 1r2 | :l;@,n*? | =0




Nuclear St opping Sy

lon-atom Iinteract ion potencial

7 7 oe? Cdlim 1 =1
V(r) = 1r2 | :l;@,n*? | =0

Classical (or statistical) tr eat ment: the Thomas-Fermi atom

Approximat ions.
PP no shell str ucture (as

elastic A ~ .
static (velocity in dependent) gj’gfzi”dztr;e izgde?sr) I ee-
universa ! = ! (r/a)

screening length



Nuclear St opping Sp

lon-atom Iinteract ion potencial

7 7 oe? Cdlim 1 =1
V(r) = 1r2 | :l;@,n*? | =0

Classical (or statistical) tr eat ment: the Thomas-Fermi atom

Approximat ions.
PP no shell str ucture (as

elastic - = -
static (velocity in dependent) R I CCEL T Farif ee-
: | =1 (r/a) Fock solid state models)
universal : = : (I’ a ) :
screening length
classical scattering d' S - Tal
V(r)pertubationtreatment ] n — :

TG= energy tr ansfered to an atom at r est (target)
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Geart4d
Nuclear stopping

Univer sal stopping in r educed units s cales back t o ion-atom
dependent stopping in physical units. Available choices:

ICRU_R49 - pa rameterization of M oliere®screening fu nction

Zieglerl977

ZieglerL985 (’) the ZBL u niversal p otencial
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In G4Cerenkov

Intr oduced a new physical process for
the r ecoalls
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don©de posit T when T < CUT
changed CUT from Tpto T

SetNFiclear qUIen@Off() IS mandatory

compet ition between total energy ultimately given
to electr onsand energy permanrently lost t o recoils
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Geart4 ha s no nuclear r ecolls (at | east hea vy ion)

It a Iso doesnDha ve the r espective cross sections (neither
differential nor integrated)

1 a pproximat ion, using only w hat Geant4 a Iready has:

the r ecoll atom kinetic energy is
parameterized nuclear st

actually, we shouldn®e ven tr y t 6
approximate nuclear collisions as a

~ dE cont inuous process (as opposed t o
TG | | ) . -
- dx . electr onic stopping) as you@e not

supposed to get ar ecoil every step, ju
the so called continuous every now and then
loosely sense) => a cont inuous process

mgor disadvantage: very str ong dependence on step size

=> an external parameter in n eed of Pn e tu ning

In a
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Nuclear quenching: Si

Si: LSS vs. SRIM vs. GEANT4 vs. exp. data

total fraction of energy transfered to electrons

"'[$ (Er) = total energy given to electr ons ! Er

I T T T | |
Er= initiallr ecoil en elzrgy | | | !

On= $ / E r=nuclear quenching ! 1

TRIM
LSS

Sattler
Gerbier
0.01 10eVICRU_R49p ICRU_R4

0.025 10eV ICRU_R49p ICRU_RA4
0.0255eV ICRU_R49p ICRU_RA4
0.025 5eV SRIM2000p Zieglerl9
0.025 5eV Ziegler1985p Zieglerl9

| —— 0.035 5eV Ziegler1985p Zieglerl9
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Geant4, exp.datg + Akimov
+ Aprile
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2t3/ 2 numerical integration
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implement the To do: load them in Geant4,
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Opposed t o the standard method of solving the s cattering integral:
SRIM/ TRIM (the standard!)
M.H. Mendenhdla and R.A. Weller, An algorithm f or compu ing screened

Caulomb scattering in GEANT4 Nuclear Ins tr uments an d Methods in Physics
Research B227, 3 (20 05) 420
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Electr onic Stopping Se

Fermi-Teller:|Sg ! v (ion velocity) if Vv < Vg

Vo

Lindhar d: unifor m fr ee electr on gas, Thomas-Fermi atom, particle-
plasma interaction as a perturbation

S. = kel ? if v < Bragg peak (~ voZ:'° ~ 500M eV for Xe)

010 < k < 020 A. Mangiarottietal., 2007

(reduced units)
Kxe! 0.16€

SRIM: local density

approximat ion using
Hartr ee-Fock solid
state atoms semi-
empirical bt of c harge
state of the io n
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E = initial particle energy (e.g. E¥%= 122keV for Co57 or Erfor
recolils produced by neutr ons or WIMP's)

$ (E) =total energy ultimately givento electrons ! E ($%' E %
On = $r/ E r = nuclear quenching (of the r ecoils) ! 1
Bu w hat do we a ctually measure in the | ab ?!

| 2(Eg) . We(E))
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R: Ws ="gr /Nph and are both just functions of LET
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Nuclear quenching ?!

E = initial particle energy (e.g. E¥%= 122keV for Co57 or Erfor
recolils produced by neutr ons or WIMP's)

$ (E) =total energy ultimately givento electrons ! E ($%' E %
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Hitachi gives
where we r edebne: constart < 1
| . Ws = E) /Nph ' ' now they refer to the energy

, -~ ; Ws , transfered to eledr ons only!
R: Ws ="Rr /Nph * and are both just functions of LET



relative) SCint il lat ion efpbciency

Ws (E)
Ws(ERr)

Oh !

| s everybody clear a bout th Is dePnition ?!

derivation from the traditional/experimental formula

comparison with Hitachi definition
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