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• Low energy extension
• Physics list: only 

G4hLowEnergyIonisation
• Very small step sizes (~1% of the 

particle range)
• Continuous slowing down 

approximation:

• Cut energy very high: no delta-
rays

• Actually no secondaries what so 
ever! Just follow our primary till 
it stops (default MinKineticEnergy 
= 10eV)

• No fluctuations
Geometry:

• just a square box, filled with 
pure material

• shoot primary from the center of 
the box, random direction
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➡ parameterization is for protons and alphas only
➡ for other heavy ions, the stopping is scaled by:

Sei(T ) = Z2
eff · Sep(Tp), Tp =

Mp

M
T

effective charge 
parameterization

• Ziegler, 1985,
Brandt and 
Kitagawa, 1982

Zeff (v, vF )

alpha stopping 
parameterizations
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classical scattering
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Figure 3.1: Classical two-particle scattering; (a) in laboratory coordinates, and (b) in
barycentric coordinates. v, v1, v2 and vc are the velocity in the laboratory reference
frame of, respectively, the incident particle before and after the collision, the target
particle (assumed initially at rest) after the collision, and the center of mass of the
two particles.

potential energy.

The energy T transferred by the incoming particle with energy E to the target

particle is a result of elastic-collision theory (see for example Ref. [81]) dictated by

the conservation laws of energy and (longitudinal and transversal) momentum

T = γE sin2 Θ

2
(3.2)

where Θ is the scattering angle in the center-of-mass frame of reference for the two

particles (Fig. 3.1), and

γ =
4M1M2

(M1 + M2)2
(3.3)

is the energy-transfer coefficient. M1 and M2 are the atomic masses of, respectively,

the projectile and the target particle. In order to get the cross-section for the energy

transferred, the probability for each final scattering angle is needed.

To obtain the details of the scattering trajectory, a static, central-force potential

36

Note: the primary particle is already a 
recoil, doesn’t matter if it originated from 
WIMPs or neutron scattering

recoil CUT energy (default MinKineticEnergy = 10eV)
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• Had to make some changes to 
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★ don’t deposit T when T < CUT
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code structure based on δ-electrons 
emission, fluorescence and atom 

deexcitation of G4hLowEnergyIonisation 
and on the continous photon generation 

in G4Cerenkov
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Note: the primary particle is already a 
recoil, doesn’t matter if it originated from 
WIMPs or neutron scattering

recoil CUT energy (default MinKineticEnergy = 10eV)

Physics list:
• Introduced a new physical process for 

the recoils
• Had to make some changes to 

G4hLowEnergyIonisation:
★ don’t deposit T when T < CUT
★ changed CUT from Tp to T
★ SetNuclearStoppingOff() is mandatory

➡competition between total energy ultimately given 
to electrons and energy permanently lost to recoils

code structure based on δ-electrons 
emission, fluorescence and atom 

deexcitation of G4hLowEnergyIonisation 
and on the continous photon generation 

in G4Cerenkov

nuclear quenching
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• Geant4 has no nuclear recoils (at least heavy ion)
• It also doesn’t have the respective cross sections (neither 

differential nor integrated)

➡ 1st approximation, using only what Geant4 already has:
➡ the recoil atom kinetic energy is taken from the 

parameterized nuclear stopping power

➡ the so called continuous slowing down approximation (in a 
loosely sense) => a continuous process

➡ major disadvantage: very strong dependence on step size 
=> an external parameter in need of fine tuning

T =
(
−dE

dx

)

n

∆x = Sn × step size’

actually, we shouldn’t even try to 
approximate nuclear collisions as a 
continuous process (as opposed to 
electronic stopping) as you’re not 

supposed to get a recoil every step, just 
every now and then
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Electronic Stopping Se

around the intruder particle due to its Coulomb
field. This leads to a higher (dE/dx)e as can be
seen in Fig. 2. Finally, Ritchie considered the case
where the Coulomb field is exponentially screened,
slightly decreasing (dE/dx)e (see Fig. 2). The last
effect is of particular relevance for ions, which
can accommodate bound states while sweeping
through the electron plasma. For a bare ion, a
scaling with Z2

P to the elementary particle case is
expected, as assumed in Fig. 2. In reality, this is
not correct and the theory was extended to a par-
tially ionized intruder by Ferrell and Ritchie [15],
but the determination of the equilibrium charge
of a given ion remains a difficult task. Lindhard
also independently investigated this problem [1]
and, using the Thomas-Fermi theory, arrived at
a closed form for the proportionality coefficient.
In terms of the non-dimensional variables intro-
duced in Eq. (1), his result can be expressed as
(dε/dρ)e = κ

√
ε where

κ =
32

3 π

√

me c2

mamu c2

Z1/2

P Z1/2

T

Z3/4

A3/2

tot

A3/2

P A1/2

T

ξe (2)

with ξe ≈ Z1/6
p (which is regarded only as an ap-

proximation by Lindhard) [1]. The points corre-
sponding to the projectile/target combinations of
interest for the present study are also reported in
Fig. 2. The suppression of the electronic energy loss
occurs mostly due to the partial ionization of the
intruder. It strongly increases with ZP (ZP = ZT ).

The proportionality of (dE/dx)e with β is also
a feature of the SRIM code, allowing a value of
(dE/dx)e/(β Z2

P ) to be extracted (see Fig. 2).
While SRIM exceeds the LSS theory for Si, it then
decreases consistently below it, up to a factor of
4 for Xe. The reason for this discrepancy is un-
clear, because the details on the implementation
of (dE/dx)e in SRIM for low velocities are not
public, but it probably resides in the estimate of
the intruder charge state. It has been verified that
data for protons of comparable energies per nu-
cleon on Ar and Xe are well reproduced by SRIM.

The big drawback of the described theoretical
approaches is to assume that the electronic and
nuclear collisions are uncorrelated [1]. In reality,
the screened Coulomb repulsion between the two
interacting nuclei makes part of the impact pa-
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Fig. 2. Proportionality coefficient of the electronic energy
loss to the particle velocity as a function of the Wigner–
Seitz radius rs. For ions a Z2

P
scaling is applied.

rameter range unavailable for the scattering of
the electrons belonging to the target atom in the
screened Coulomb field of the projectile and vice
versa. Tilinin [2] has shown that the final net effect
is a great decrease of Se for ε # 1, with a corre-
sponding lack of proportionality to

√
ε. His results

can also be recast in the form of Eq. (2) where ξe

is replaced by a function τ(ε, ZP /ZT ) that can be
tabulated [2]. In the present case, his theory pre-
dicts roughly half the value of Se expected from
LSS and SRIM for Si and approximately agrees
with SRIM for Xe.

4. The full ion recoil cascade

As mentioned, resort must be made to response
measurements employing elastic neutron scatter-
ing, where recombination or quenching may influ-
ence the final fraction of the total energy trans-
ferred to electrons that is detectable as excitation
or ionization, particularly in the case of scintilla-
tion yield for LXe. Theoretically, however, an even
bigger disadvantage is present; especially for high
Z elements: Sn dominates over Se and most of the
primary ion energy is transferred to nuclear re-
coils. The knocked ion undergoes the same process,
resulting in a full cascade of recoils, whose total
electronic energy loss must be evaluated. In the
case of the SRIM code, a second program, called
TRIM [11], reads Sn and Se from the first and per-
forms the computation. Lindhard and his group
solved numerically the transport equations corre-

3

Se ∝ v (ion velocity) if v < vF ∼ v0Fermi-Teller:
Lindhard: uniform free electron gas, Thomas-Fermi atom, particle-

plasma interaction as a perturbation

0.10 < k < 0.20
(reduced units)
kXe ≈ 0.166

Se = kε1/2 if v < Bragg peak (∼ v0Z
2/3
1 ≈ 500MeV for Xe)

SRIM: local density 
approximation using 
Hartree-Fock solid 
state atoms; semi-

empirical fit of charge 
state of the ion

5 A. Mangiarotti et al., 2007
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Hitachi gives 
constant < 1



qn ×
WS(Eγ)
WS(ER)

(relative) Scintillation efficiency

Is everybody clear about this definition ?!
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