

Recent Experience with Viewports and Mirrors at CERN

Gerhard Schneider

Outline

Some CERN applications

Window flange parts and types

CERN's experiences

CERN's requirements

This is a workshop, your experience is very welcome, please share

Experience with mirrors

CERN applications (selection)

Laboratory application, here amorphous Carbon coating

here beam on target, BTV instrument, ~200 at CERN

Window flanges for visual inspection and position encoding

Other beam instruments with optics installed in CERN accelerator complex:

- Observation of mirrored synchrotron light (BSRT)
- Indirect beam-size related observation of electrons that hit a fluorescence target (BGI)
- Observation of fluorescence of circulating LHC beam using gas (BGC)
- ... and many others
 - → Total about 250 window flanges installed in CERN particle accelerators

Window flange parts Cookbook

Flange

Window

Weld Ring (Spinning)

Weld flange to weld ring

Braze/Bond glass to weld ring Connection

Flange material types

- Stainless steel types 304L, 316L, 316LN,...
- Titanium
- Aluminium....

Flange design types

- Conflat
- KF
- ISO....

Window material choice

- Optical requirements
 - Wavelength (IR, visual light, UV)
 - Transmission
 - Laser Damage Threshold
- Bakeout temperature

Dimensions

Radiation Resistance

Window material types

Borosilicate glass (Kodial)

Fused silica (Quartz glass)

Sapphire

- Many others:
 - MgF2, BaF2, CaF2, ZnSe, CVD diamond, Lead Glass...

Typical bakeout temperatures of window flanges

- Borosilicat (Kodial) glass 350 °C
- Fused Silica 200 °C
- Sapphire 200 °C, special constructions allow to 450 °C
- Lead glass 350 °C
- CVD Diamond 450 °C

Coatings

Wide spectrum of what is the purpose of the coating:

- non-reflective

- Passage of only a given wavelength

- Blockage of a given wavelength

Consider if Halogens are acceptable (Damage with radiation, Synchroton light?)

Bonded versus brazed

When is brazing used and when is bonding used?

- Bonded
 - «polymer vacuum compatible adhesive» \rightarrow limited to about 120°C
 - No stress on window due to the assembly process
- Brazing
 - More flexible in temperature
 - Radiation environment
 - Potential stress due to the assembly process

Weld ring material types

Kovar

Kovar (trademark of CRS Holdings, inc., Delaware) is a nickel-cobalt ferrous alloy, designed to have substantially the same thermal expansion characteristics as borosilicate glass ($^{\sim}5 \times 10^{-6}$ /K between 30 and 200 °C) to allow a tight mechanical joint between the two materials over a range of temperatures. It finds application in glass-to-metal seals in scientific apparatus.... (From Wikipedia)

Given in percentages of weight.

<u>Fe</u>	<u>Ni</u>	<u>Co</u>	<u>C</u>	<u>Si</u>	<u>Mn</u>
balance	29%	17%	< 0.01%	0.2%	0.3%

Issues: Ferro-magnetic and high cobalt content for applications magnetic fields and radioactive environments

Magnetic field:

tantalum, titanium, non-magnetic steel, many options if below 120°C depending on the application

Physical properties, selection

Material	Youngs Modulus (GPa)	Ultimate Tensile (Yield) Strength (MPa)	Thermal Expansion (10 ⁻⁶ K ⁻¹)
Borosilicat Glass*	67 to 80	280* (some other references lower, big spread)	3.3 to 5.1
Fused Silica*	~73	~50	0.5
Synthetic Sapphire*	~450	~2470	5.3
CDV Diamond*	~1050	~750	1.0
Kovar	138	(~300)	5.5
Stainless Steel (316L)	200	(~210)	16

Reference:

*https://www.makeitfrom.com

Further reading: https://highlyeducatedti.com/blogs/information/thermal-shock-vs-tensile-strength

CERN Experience (1)

- Basically no problems with borosilicate (Kodial) glass
- For fused silica: Many window breaks or leaks after mounting or bakeout of new supplied window flanges with leak tightness certificates from various suppliers

Why?

- → Window flanges are usually tested at room temperature with an elastomerseal
- → CERN uses "standard" non-annealed copper gaskets in order to minimise logistic problems (change in hardness higher risk of leaks in the long term?)

CERN Experience (2)

 All window flange suppliers propose/insist to use annealed copper gaskets and propose to supply them with the window flange delivery

Should we change our seal specification or insist on it?

CERN PS 1959

CERN PS during technical stop 2019

CERN Window Flange Technical Specification

Philosophy: Use the seals and bakeout condition as used in the machines at the window flange manufacturer site

- → CERN supplied copper gaskets
- → Bakeout followed by leak test at the manufacturers premisis
- → Witness mount and bakeout
- → Cross check tests at CERN

Result from "harsh" technical specification

- Initial price higher
- Less tests at CERN → lower cost
- Easier stock management
- Low brakeage rate at CERN
- Works when needed
- Global financial and logistics gain

....but not still no guarantee for full success

Failure here:

- o Fused Silica glass «popped out» while tightening the bolts
- Experienced mechanic
- Incident after re-installation → previously fully leak tight

BSRT Mirror and Flange damage

Beam Synchrotron Radiation Telescope (BSRT)

Synchrotron Radiation passes window flange

Courtesy: E. Bravin

SR Damage on Mirror and on window flange

SR Damage on Mirror and on window flange

SR footprint on VP

Result of investigation:

- Damage is caused by etching
- Cause of the etching not identified, maybe halogens from optical coatings near-by
- O No «external» elements found on damaged surface

Summary

- CERN uses mostly window flanges in accelerator environment -> Costly exchange
- Window flange breakages with fused silica windows leading to "test-as-used" technical specification
- CERN witnesses test from CERN member state manufacturers on-site
- Window flange manufacturer mechanical expertise is the Weld Ring design including brazing (or bonding) to the window and welding to the flange
- Please feel free to share your experience

Thank you!

Questions and what is your experience?