EvtGen report for LHCC review

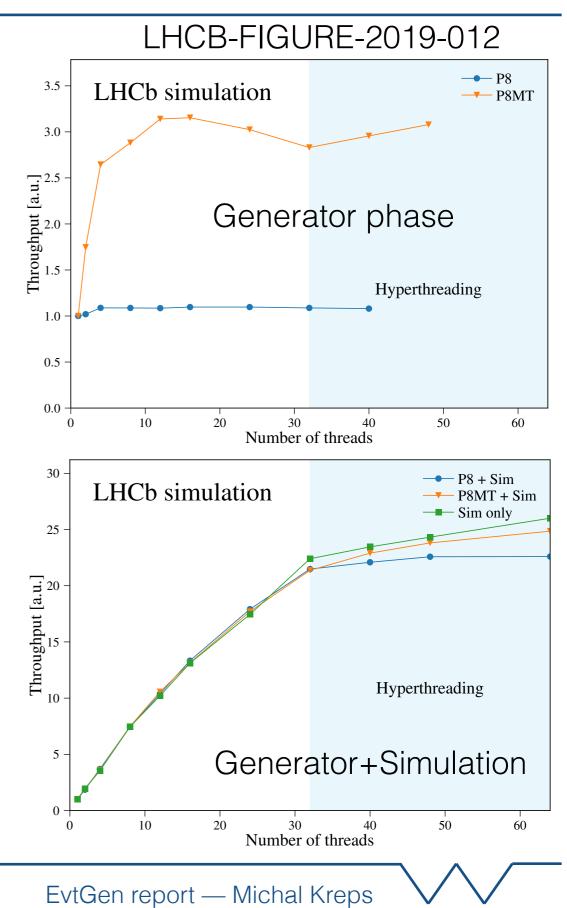
Michal Kreps HSF generator WG meeting, 6th May 2021

Team behind and funding

- Core team consists of John Back, Tom Latham, Fernando Abudinen and myself
- We have fraction of our time funded for work on EvtGen
 - Mostly UK STFC Consolidated grant
 - Part of the funding is attached to LHCb as part of our responsibility within experiment, part being for general maintenance
 - Fernando is currently funded by Warwick University (as part of collaboration with Monash)
- Other people contribute by writing new decay models driven by their needs
 - Mostly done in the context of measurements they are doing

What is EvtGen and its status

- EvtGen is package specialised for heavy flavour hadron decays
 It consists of about 130 decay models which implement specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decays do not add up to 100% BF, what is missing is filled up by generating quark configurations and passing those to Pythia8 for fragmentation
 - Amount passed to Pythia8 varies depending on particle with bbaryons relaying more on Pythia8 than others
- от decays are done using Tauola
- Photos used for radiative corrections
- Code has been largely stable over past 10 years with most of the changes due to added models
- Some modernisation and cleanup was done rather recently


Plan for future developments

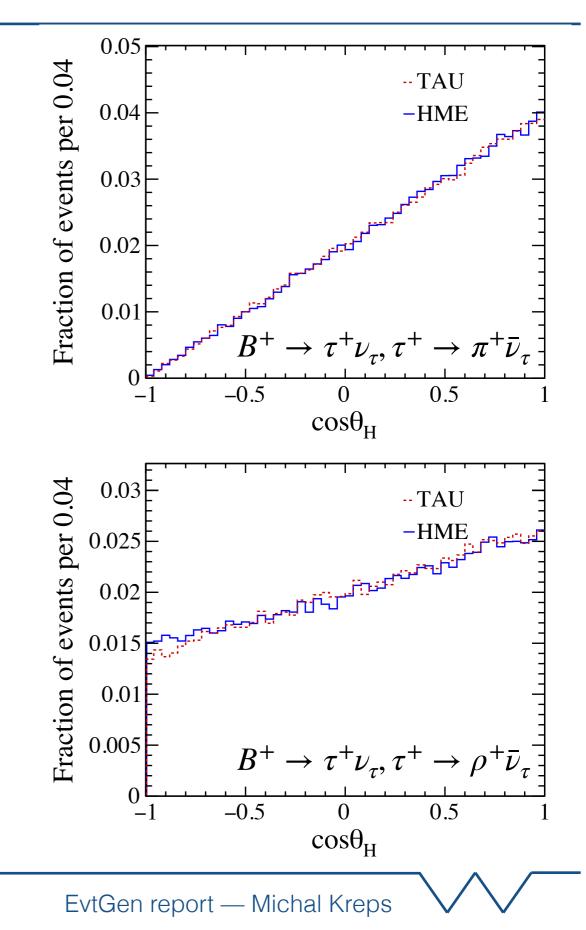
- Physics wise no plan for changes in near future
- Working on some code consolidation
 - Unify coding style, C++ modernisation
 - Plan to decrease code duplication within decay models
 - Improve/update documentation (Doxygen and paper/guide)
 - None of these is urgent and we are working through it slowly as time allows
- Plan to allow event level multithreading
 - Event here actually means particle to be decayed through full decay chain
 - Main blocking points here are Tauola and Photos, none of which allows multithreading
 - We have some funding for computing engineer to work on code redesign
 - Potentially not enough for full adaptation, core should be doable

Multithreading environment within LHCb

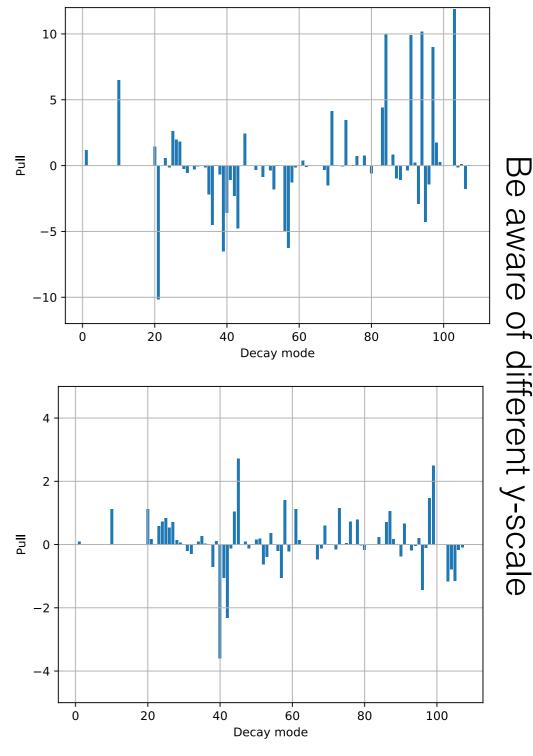
- New version of simulation under development uses single EvtGen instance which is locked as needed
- With only generator, there is limitation from few threads
- When detector simulation runs at the same time, there is no visible effect
- LHCb by default runs
 Generator+simulation in the same job
 - This is probably different to other experiments
 - There could still be limit with more threads

Issues with multithreading in EvtGen

- Structural limitations inside EvtGen for running multithreaded, e.g.
 - Global instance of random number generator
 - Global instance of particle properties and decay table (probably less of an issue
- Limitations from dependencies
 - Tauola
 - Photos
- Structural changes are fully in our hands, but require touching practically everything
- Dependencies more difficult as these are external
 - Replace Tauola with Pythia8
 - Look for alternative to Photos discussing with Peter Skands and investigate SOPHTY


Issues with multithreading in EvtGen

- Photos is used on practically every decay 22 220 x 💶 50 882 x in usual use case EvtRadCorr::doRadCorr(EvtParticle*) 💶 45.84 % From profiling, we spend significant **115 577 x** amount of time in Photos itself EvtPHOTOS::doRadCorr(EvtParticle*) What we see from EvtGen side is that **__** 45.84 % conversion to HepMC and from HepMC **2**115 577 x is significant on EvtGen side EvtPhotosEngine::doDecay(EvtParticle Similar conversion happens inside Photos **__**45.83 % • Overall, probably half of the time needed 115 565 x for radiative correction is event Photospp::PhotosEvent::process() conversion 35.19 % 💶 81 713 x Need to try to bypass HepMC to see how much we can gain there
- Likely about 1/3 of the time in EvtGen is on radiative correction
 Locking Photos inside EvtGen unlikely to be satisfactory


Tauola replacement

- Pythia8 provides τ decays using helicity formalisms
- EvtGen already depends on Pythia8 for other reasons, so try to use their functionality for τ decays
- Main interface is ready and we are just finalising minor details
- Unlike with Tauola, Pythia8 provides amplitude for particular spin state and sum over spin states done by EvtGen
- Almost done, but will need to iron out some details with Pythia8 authors (1 method needs to be made public)

Decay table

- Decay table is one thing which is difficult to update
- At some point we tried
 - Outcome had some mistakes as data are not always fully clear
- Attempt with D_s as testbed to update by hand to summary tables from RPP by minimising discrepancies
- Issue with unobserved explicitly listed decays as it is hard to track down original assumptions
 - Would require considerable amount of time to try to reconstruct assumptions
- Other issue is consistency of particle properties between generators

Decay channel in RPP 2018

Summary

EvtGen package rather stable over years

We hope to be able to make core thread safe within about year

- Radiative correction where Photos is used is main concern
- Existing funding allows enough support to fix bugs and do necessary changes for newer OS, dependencies or compiler versions
 - Large developments would need dedicated funding

