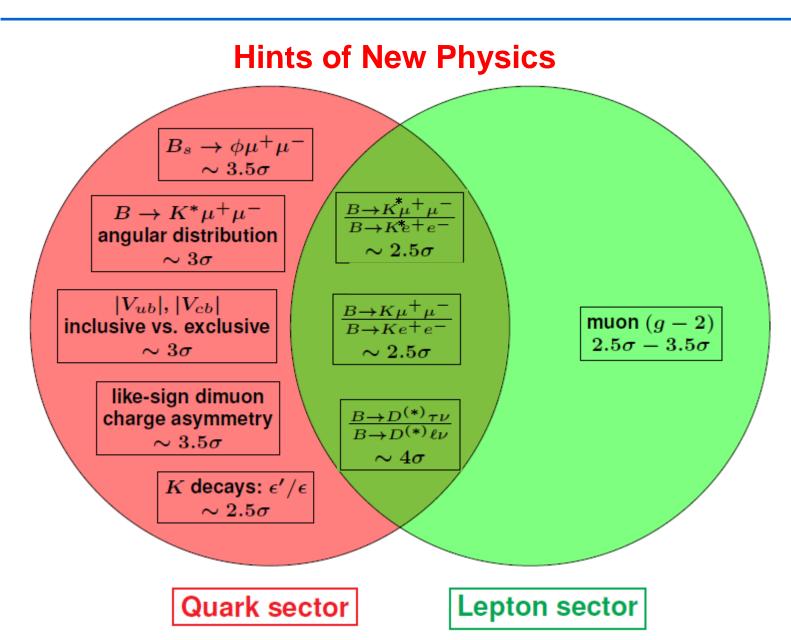
B-physics anomalies and t-channel dark matter

Federico Mescia


Universitat de Barcelona

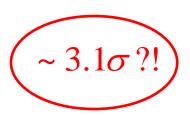
A 111		
Outling		
<i>. ,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Outilie.		

- ❖ B-Anomalies by loops of scalars and fermions:
 - © Minimal NP field content: *only left-handed couplings*
 - © Stable DM candidate: relic density by thermal freeze-out
 - © Signatures for Direct Searches at Atlas/CMS

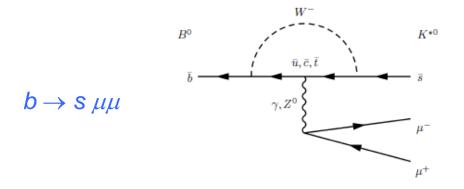
5th Red LHC Workshop, May 10-12, 2021

Flavour Anomalies up to now

B-Anomalies: theoretically clean!


- ❖ Breaking of Lepton Flavour Universality (LFU)
 - \triangleright LFU from $b \rightarrow s$ neutral currents: μ vs e

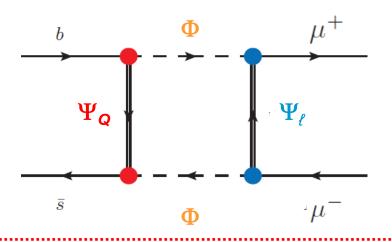
$$R_{K^{(*)}} = \frac{Br(B \to K^{(*)}\mu\mu)}{Br(B \to K^{(*)}ee)}$$


See next talk from Alessandra Gioventu

❖ New Physics effects are about 15% of the SM

B-Anomalies: theoretically clean!

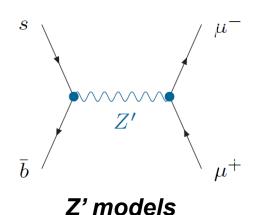
- ❖ Breaking of Lepton Flavour Universality (LFU)
 - \triangleright LFU from $b \rightarrow s$ neutral currents: μ vs e


Suppressed SM processes

- © FCNC processes
- © NP at one-loop

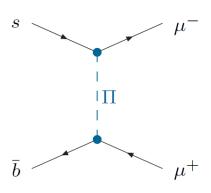
Not impossible! Where we expect

$b \rightarrow s \mu^+\mu^-$: New Physics Models


© Loop-level solutions to *B*-anomalies

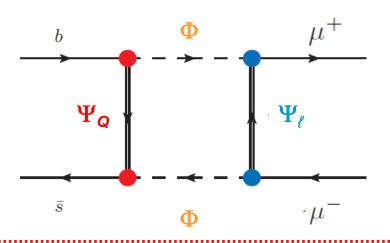
THIS TALK

SM at one-loop NP at one-loop It sounds good

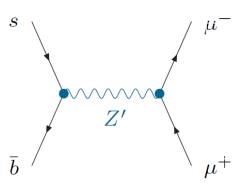

⊗ tree-level solutions to *B*-anomalies

SM at one-loop

NP at tree-loop

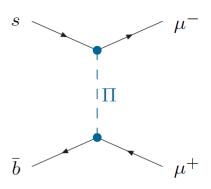

It sounds crazy

Leptoquarks


Linking b \rightarrow s $\mu\mu$ anomalies to DM in loop models

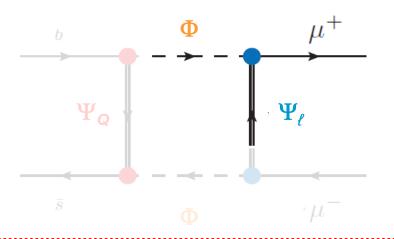
© Loop-level solutions to *B*-anomalies

DM candidate from one of the particles in the loops


☼ tree-level solutions to B-anomalies

Z' models

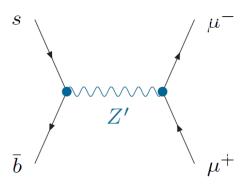
No DM candidates


NP at tree-loop It sounds crazy

Leptoquarks

Linking $b \rightarrow s \mu \mu$ anomalies to DM in loop models

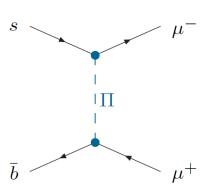
© Loop-level solutions to *B*-anomalies


$$\odot$$
 for $M_{\Psi} > M_{\Phi}$

 Φ is LSP

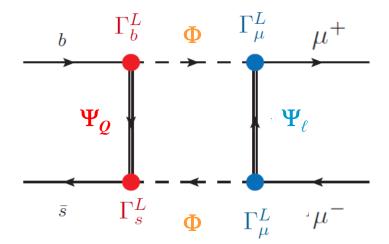
Lightest Stable particle

→ DM candidate


☼ tree-level solutions to B-anomalies

No DM candidates

NP at tree-loop It sounds crazy

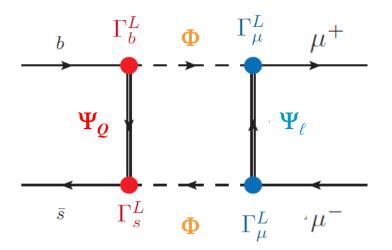


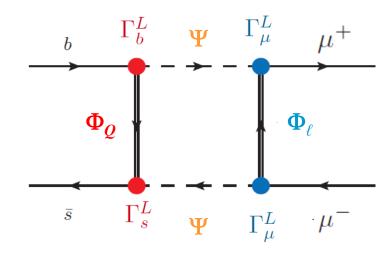
Leptoquarks

Minimal Setup:

- > Three new fields:
 - One scalar , ◆
 - LH vector-like Quark Ψ_Q
 - LH vector-like Lepton \(\frac{\Psi}{\ell}\)

Gripaios, Nardecccha, Renner '15


Arnan, Crivellin, Hofer, F.M '16

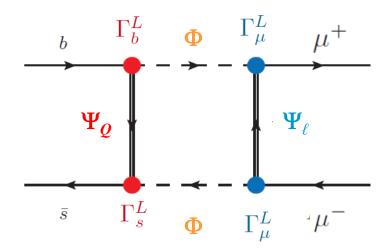

Cedeño, Cheek, Martin-Ramiro, Moreno '19

Minimal Setup:

- > Three new fields:
 - One scalar , ◆
 - LH vector-like Quark Ψ₀
 - LH vector-like Lepton Ψ_ℓ

(or vice versa)

Gripaios, Nardecccha, Renner '15


Arnan, Crivellin, Hofer, F.M '16

Cedeño, Cheek, Martin-Ramiro, Moreno '19

Minimal Setup:

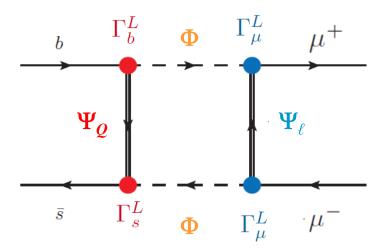
- > Three new fields:
 - One scalar , Φ
 - LH vector-like Quark Ψ₀
 - LH vector-like Lepton \(\vec{\psi}_\ell\)

(or vice versa)

© GOOD Characteristics:

$$\mathcal{C}_9^{ ext{NP}} = -\mathcal{C}_{10}^{ ext{NP}}$$

> scenario with left-handed couplings Γ_b^L , Γ_s^L , Γ_μ^L allows for good description of $b \to s \ell^+ \ell^-$ data:


$$q_{L} \quad \mathcal{C}_{9}^{NP} = -\mathcal{C}_{10}^{NP} (4.6\sigma) \quad \mathcal{C}_{9}^{NP} = \mathcal{C}_{10}^{NP} (1.0\sigma)$$

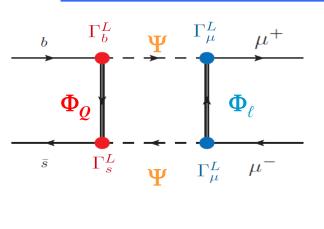
$$q_{R} \quad \mathcal{C}_{9'}^{NP} = -\mathcal{C}_{10'}^{NP} (0.6\sigma) \quad \mathcal{C}_{9'}^{NP} = \mathcal{C}_{10'}^{NP} (0.1\sigma)$$

Minimal Setup:

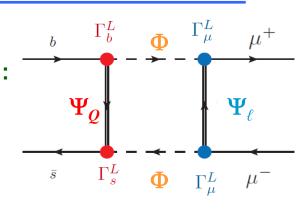
- > Three new fields:
 - One scalar , ◆
 - LH vector-like Quark Ψ_Q
 - LH vector-like Lepton \(\vec{\psi}_\ell\)

(or vice versa)

© GOOD Characteristics:



$$\mathcal{C}_9^{ ext{NP}} = -\mathcal{C}_{10}^{ ext{NP}}$$


no additional sources of $SU(2)_L$ -breaking:

• corrections to $Z \to \mu^+\mu^-$ proportional to $m_Z^2/m_{\rm NP}^2$: 1-2 orders of magn. below the sensitivity of LEP for $m_{\rm NP} \gtrsim 1\,{\rm TeV}$

Systematic study to $b \rightarrow s \mu^+\mu^-$ by Dark loops

Arcadi, Calibbi, Fedele. FM '21: Dirac/Scalar DM up to triplet

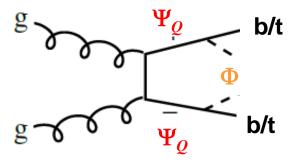
Φ

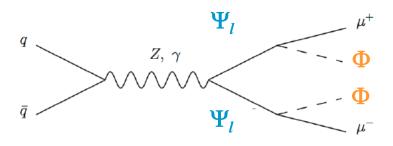
□ F-model (fermion mediator)

Φ_Q	Φ_L	Ψ
$({f 3},{f 2},7/6)$	$(1,2,1/2)^{\star}$	$({f 1},{f 1},-1)$
(3, 2, 1/6)	$({f 1},{f 2},-1/2)^{\star}$	$({\bf 1},{\bf 1},0)^{\star}$
$({f 1},{f 2},1/2)^{\star}$	$(\bar{\bf 3},{f 2},-1/6)$	(3,1,-1/3)
$({f 1},{f 2},-1/2)^{\star}$	$({f 3},{f 2},-7/6)$	(3, 1, 2/3)
(3,1,2/3)	$({\bf 1},{\bf 1},0)^{\star}$	(1,2,-1/2)
$(1,1,0)^*$	$(\bar{\bf 3},{\bf 1},-2/3)$	(3, 2, 1/6)
(3, 3, 5/3)	$(1,3,1)^{\star}$	(1 , 2 , -3/2)
(3, 3, 2/3)	$({f 1},{f 3},0)^{\star}$	$({f 1},{f 2},-1/2)$
(3,3,-1/3)	$(1,3,-1)^{\star}$	$({f 1},{f 2},1/2)$
$(1,3,1)^*$	$(\bar{\bf 3},{\bf 3},1/3)$	(3,2,-5/6)
$({f 1},{f 3},0)^{\star}$	$({f 3},{f 3},-2/3)$	(3, 2, 1/6)

□ S-model (scalar mediator)

 Ψ_L

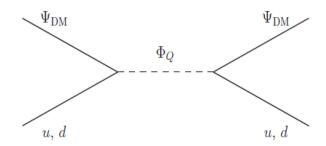

 Ψ_Q


(3, 2, 1/6)	$({f 1},{f 2},-1/2)$	$({\bf 1},{\bf 1},0)^{\star}$
(3,1,2/3)	$({\bf 1},{\bf 1},0)^{\star}$	$({f 1},{f 2},-1/2)^{\star}$
(3 , 1 , -1/3)	(1 , 1 ,-1)	$({\bf 1},{\bf 2},1/2)^{\star}$
$({\bf 1},{\bf 1},0)^{\star}$	$(\bar{\bf 3},{\bf 1},-2/3)$	$({f 3},{f 2},1/6)$
(3, 3, 2/3)	$({f 1},{f 3},0)^{\star}$	$({f 1},{f 2},-1/2)^{\star}$
(3,3,-1/3)	$({f 1},{f 3},-1)$	$({\bf 1},{\bf 2},1/2)^{\star}$
$({f 1},{f 3},0)^{\star}$	$(\bar{\bf 3},{\bf 3},-2/3)$	$({f 3},{f 2},1/6)$
(3, 2, 7/6)	$({f 1},{f 2},1/2)$	$(1,3,-1)^{\star}$
$({f 3},{f 2},1/6)$	$({f 1},{f 2},-1/2)$	$({f 1},{f 3},0)^{\star}$
(3 , 2 , -5/6)	$({f 1},{f 2},-3/2)$	$({f 1},{f 3},1)^{\star}$
(3, 3, 2/3)	$({\bf 1},{\bf 1},0)^{\star}$	$({f 1},{f 2},-1/2)^{\star}$
(3, 3, -1/3)	$({f 1},{f 1},-1)$	$({\bf 1},{\bf 2},1/2)^{\star}$

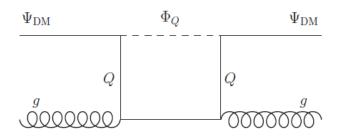
Linking $b \rightarrow s \mu\mu$ anomalies to DM in loop models

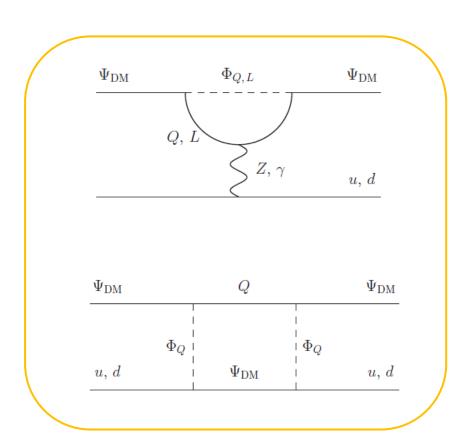
Collider Signatures

For $M_{\varphi} < M_{\Psi}$


"Sbottom-like" production bb/(tt) + MET

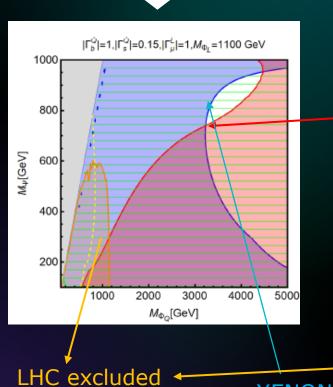
"Slepton-like" production $\mu \mu + MET$


Bounds from direct searches at LHC of sbottoms/sleptons, neutralinos & charginos.


Linking $b \rightarrow s \mu \mu$ anomalies to DM in loop models

DM Direct Detection

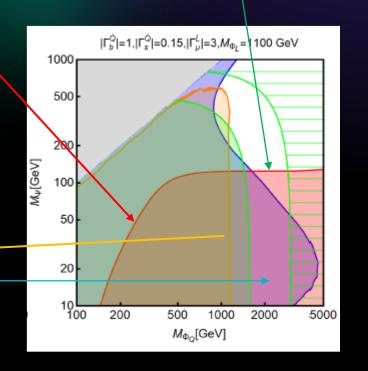
CKM suppressed (coupling with 1rt generation absent)


Absent for Real and Majorana DM

Bounds from direct detection of WIMPs at the Xenon

Dirac DM

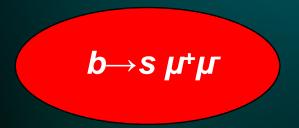
substantially ruled out by Direct Detection


XENON1T Excluded

Arcadi, Calibbi, Fedele, FM '21:
systematic study from Dirac/Scalar DM
up to SU(2) triplet

Majorana DM

Viable fit of flavor anomalies

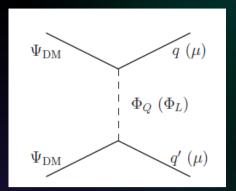

(3, 2, 1/6)

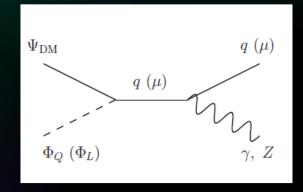
 $(1, 2, -1/2)^*$

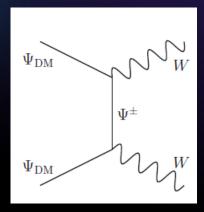
 $({\bf 1},{\bf 1},0)^{\star}$

Summary

Very interesting pattern of B-anomalies in the muon sectors

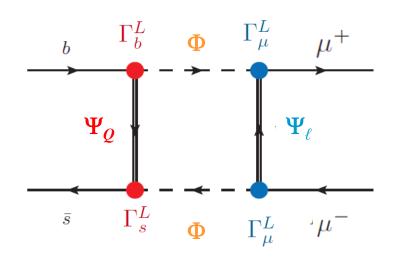

Solutions by dark loops link between DM and B-anomalies


- Viable explanation of B-anomalies and thermal WIMP DM possible but:
 - 1. Real scalar and Majorana fermion DM favored to avoid DM Direct Detection.
 - 2. Singlet DM preferred to higher EW multiplet, since *B*-anomalies compatible to DM sensitively below the TeV.
 - 3. Sizable coupling with muon favored to have efficient enough annihilation.

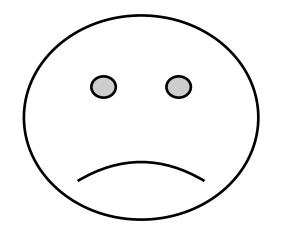

Thanks

Relic Density

$$\Omega_{\rm DM} h^2 \approx 8.76 \times 10^{-11} \,{\rm GeV}^{-2} \left[\int_{T_{\rm f.o.}}^{T_0} g_*^{1/2} \langle \sigma v \rangle_{\rm eff} \frac{dT}{M_{\rm DM}} \right]^{-1}$$


Present only if DM is part of SU(2) multiplet

Explaining $b \to s \mu^+\mu^-$ by box effects: $B_s - \overline{B}_s$ mixing


❖ Minimal Setup:

- > Three new fields:
 - One scalar , ◆
 - LH vector-like Quark Ψ₀
 - LH vector-like Lepton \(\textstyle{\Psi}\)_\ellipseq

(or vice versa)

\otimes Strongest constraint $B_s - \overline{B}_s$ mixing

Di Luzio, Kirk and Lenz '18