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Global network of GW detectors

[ligo.caltech.edu]

Ground-based GW laser interferometers:
Generation 1: GEO600, LIGO, TAMA, Virgo
Generation 2: Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) / Virgo
Generation 2.5: KAGRA (Kamioka Gravitational Wave Detector), underground and cryogenic
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On the eve of multifrequency GW astronomy

Ground Space Sky

f ∼ 10 · · · 1000 Hz f ∼ 1 · · · 1000 mHz f ∼ 1 · · · 10 nHz

Plus: AEDGE, AION, MAGIS, TaiJi, TianQin, ...
Plus: Future measurements of CMB polarization and spectral distortions
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Transient GW signals

GW passing a Michelson interferometer Chirp signal in the LIGO / Virgo detectors

[Ballmer, Mandic: Ann. Rev. Nucl. Part. Sci. 65 (2015) 555] [ligo.caltech.edu]

Signal seen by the detector: Convolute hij with impulse response Rij (detector geometry)

s(t) =
∫ ∞
−∞

dt′
∫

d3x′Rij(t′,x′)hij(t− t′,x− x′) (1)

Decompose incoming GW into plane-wave contributions with definite f , p, and n:

hij(t,x) =
∑
p=+,×

∫ ∞
−∞

df

∫
d2nhp(f,n) epij(n) e2πif(t−nx) (2)
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Detector response to the signal

Signal seen by the detector in the frequency domain:

s̃(f) =
1

2π

∫ ∞
−∞

dt s(t) e−2πift =
∑
p=+,×

∫
d2nRp(f,n)hp(f,n) (3)

[Cornish, Romano: 1608.06889]

Antenna patterns:
Graphs of |Rp(f,n)| as functions n at fixed f .
Can be computed based on changes in the light-travel time
between test masses at the end of the interferometer arms.

Opening angle

δ = π / 2

δ = π / 3

Asymptotic value

ℛ = 1 / 5

ℛ = 3 / 20

Transfer frequency

f* =
clight
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ℛ Signal response / detector transfer function:
Average over the square of the antenna patterns.

R =
1
2

∑
p

1
4π

∫
d2n |Rp(f,n)|2 (4)

Quantifies loss in sensitivity due to the fact that, on
average, GWs do not arrive from the optimal direction.
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Searching for a stochastic GW background
Detector data stream composed of signal and noise contributions: d(t) = s(t) + n(t)

Noise characterized by detector noise power spectrum Dnoise:

〈n2(t)〉 =
∫ ∞

0
df Dnoise(f) , 〈ñ(f) ñ∗(f ′)〉 =

1
2
δ(f − f ′)Dnoise(f) (5)

Signal characterized by strain power spectrum Sh and detector transfer function R:

〈s2(t)〉 =
∫ ∞

0
df R(f)Sh(f) , 〈s̃(f) s̃∗(f ′)〉 =

1
2
δ(f − f ′)R(f)Sh(f) (6)

Challenge: Signal looks like another form of noise. Therefore, extract SGWB signal from the
noisy background based on: spectral properties, temporal modulations, null channels, etc.
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Single detector: Require Sh & Dnoise/R for detection.
Detector network: Cross-correlate signal from detector pairs.

SIJ =
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′dI(t)QIJ (t− t′) dJ (t′) (7)

with filter function QIJ (depends only on t− t′, highly
localized in time). Match QIJ so as to maximize the SNR.
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1
2
δ(f − f ′)Dnoise(f) (5)

Signal characterized by strain power spectrum Sh and detector transfer function R:

〈s2(t)〉 =
∫ ∞

0
df R(f)Sh(f) , 〈s̃(f) s̃∗(f ′)〉 =

1
2
δ(f − f ′)R(f)Sh(f) (6)

Challenge: Signal looks like another form of noise. Therefore, extract SGWB signal from the
noisy background based on: spectral properties, temporal modulations, null channels, etc.

aLIGO

aVirgo

KAGRA

CE

ET

aLHO(O2)
aLLO(O2)

10-1 100 101 102 103 104

10-50

10-48

10-46

10-44

10-42

10-40

10-38

10-36

10-34

10-32

10-30

10-28

Gravitational-wave frequency f [Hz]

D
et
ec
to
r
n
o
is
e
p
o
w
er
sp
ec
tr
u
m
D
n
o
is
e
H
z-
1


Single detector: Require Sh & Dnoise/R for detection.
Detector network: Cross-correlate signal from detector pairs.

SIJ =
∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′dI(t)QIJ (t− t′) dJ (t′) (7)

with filter function QIJ (depends only on t− t′, highly
localized in time). Match QIJ so as to maximize the SNR.

1. GW interferometers 7/21



Optimal filtering

Expectation value of SIJ , assuming uncorrelated detector noise, 〈nInJ 〉 = 0:

〈SIJ 〉 =
T

2

∫ ∞
−∞

df Q̃IJ (f) ΓIJ (f)Sh(f) (8)

Fourier-transformed filter Q̃IJ and overlap reduction function ΓIJ (generalization of R):

ΓIJ (f) =
1
2

∑
p

1
4π

∫
d2nRIp(f,n)RJ∗p (f,n) (9)

Root mean square of the noise NIJ = SIJ − 〈SIJ 〉 (in the weak-signal approximation):

〈N2
IJ 〉

1/2 =
[
〈S2
IJ 〉 − 〈SIJ 〉

2
]1/2

=
[
T

4

∫ ∞
−∞

df
∣∣Q̃IJ (f)

∣∣2 DInoise(f)DJnoise(f)
]1/2

(10)

Optimal filter that maximizes the signal-to-noise ratio %IJ = 〈SIJ 〉/〈N2
IJ 〉

1/2:

Q̃IJ (f) ∝
ΓIJ (f)Sh(f)

DInoise(f)DJnoise(f)
(11)

Note: Q̃IJ requires knowledge of the signal one intends to measure → template banks
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Overlap reduction functions
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ΓIJ =
sin2 δ

5
γIJ =

1

5
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Detector pairs:

HL: Hanford-Livingston

HV: Hanford-Virgo

LV: Livingston-Virgo

HK: Hanford-KAGRA

LK: Livingston-KAGRA

VK: Virgo-KAGRA
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Normalization such that γIJ (f = 0) = 1 for a pair of identical, co-located, co-aligned
detectors with opening angle δ between their two interferometer arms:

γIJ (f) =
5

sin2 δ
ΓIJ (12)
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Total signal-to-noise ratio

For a network of I, J = 1, · · · , Ndet detectors:

% =

[∑
J>I

%2
IJ

]1/2

, %IJ =
[

2T
∫

∆f
df

Γ2
IJ (f)S2

h(f)
DInoise(f)DJnoise(f)

]1/2

(13)

Effective strain noise power spectrum Seff
noise for the entire network:

Seff
noise(f) =

[∑
J>I

Γ2
IJ (f)

DInoise(f)DJnoise(f)

]−1/2

(14)

Express both signal and noise in terms of a GW energy density power spectrum:

Ωsignal(f) =
2π2

3H2
0
f3Sh(f) , Ωnoise(f) =

2π2

3H2
0
f3Seff

noise(f) . (15)

% =
[

2T
∫

∆f
df

(Ωsignal(f)
Ωnoise(f)

)2]1/2

∝
√
Ndet(Ndet − 1)Nbin T δf (16)

Integration over time and frequency boosts SNR by many orders of magnitude!
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Effective strain noise power spectra

Pulsar timing arrays

 NANOGrav

 PPTA

 EPTA

◦ IPTA

◦ SKA

Space-based interferometers

◦ DECIGO

◦ BBO

◦ LISA

Ground-based interferometers

 aLIGO + aVirgo (observing run 2)

◦ aLIGO (design)

◦ aLIGO + aVirgo (design)

◦ aLIGO + aVirgo + KAGRA (design)

◦ Cosmic Explorer

◦ Einstein Telescope
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Sensitivity curves

Sensitivity curves1 for the two-detector network aLIGO Hanford + aLIGO Livingston:2

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

f (Hz)

Ω
(f

)

[Romano, Thrane: 1310.5300]

Black curve: Detector noise spectrum

Dnoise(f)

Red curve: Effective strain noise

Seff
noise(f) = Dnoise(f)/ |Γ(f)|

Green curve: Rescaled effective strain noise

Seff
noise(f)/

√
Ndet(Ndet − 1)T δf

Black straight lines: Set of power-law curves that result in % = 1 based on Eq. (16)
Blue curve: Envelope → power-law-integrated sensitivity (PLIS) curve
→ Power-law signals intersecting with the PLIS curve result in % > 1.

1All curves expressed in terms of Ω: the GW energy density spectrum in units of the critical energy density ρc.
2Based on slightly obsolete data for Dnoise: https://dcc.ligo.org/LIGO-T0900288/public
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Power-law-integrated sensitivity curves
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Pulsar timing

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!3

[B. Saxton for nrao.edu]

Pulsars: Highly magnetized rotating dead stars (usually neutron stars but also white dwarfs)
◦ Rotation periods of 10−3···1 s. Accretion in close-binary systems → millisecond pulsars
◦ Beamed radio pulses emitted from magnetic poles → cosmic lighthouses

Ultra-precise clocks in the sky! Look for tiny distortions caused by nanohertz GWs.

3First indirect detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).
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Timing residuals

[IPTA Collaboration: 1602.03640]

Residuals in pulse times of arrival (TOAs):

R(i) = TOA(i)
SSB − TOA(i)

Model

◦ Measure TOAs on earth and convert to TOAs at
the solar-system barycenter (SSB)
◦ Compare to timing models for each pulsar

(frequency and derivatives, position, proper
motion, binary dynamics, relativistic effects, ...)

Timing noise of an idealized PTA experiment: Dnoise = 2σ2
t∆T

◦ 1/∆T : Cadence of the observations; typically, ∆T of the order of a few weeks.
◦ σt: Root-mean-square error of the timing residuals; typically of the order of µs.

Sensitive to GWs in the frequency range: from fmin ∼ 1/T to fmax ∼ 1/∆T
Existing PTA Collaborations:

+ + =
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Angular correlations

Integrate metric perturbation along the geodesic of the pulse → shift in pulsation frequency:

∆ν(t)
ν

= −Hij [hij(t,xe)− hij(t−D/c,xp)] , R(t) =
∫ t

0
dt′

∆ν(t′)
ν

(17)

Two contributions: earth term, pulsar term (Hij : geometrical factor; D: pulsar distance)

[Louise Mayor for physicsworld.com]

Cross-correlate the timing residuals of a pair of
pulsars that is separated by an angle ψ in the sky:

〈RI RJ 〉 ∝ ΓIJ (ψ) =
ζIJ (ψ)
12π2f2 (18)

Earth term results in characteristic correlation:

ζIJ (ψ) =
1
2

[
δIJ + 1 + cψ

(
3 ln cψ −

1
2

)]
(19)

with cψ = (1− cosψ) /2. Hellings–Downs curve!
[Hellings, Downs: Astrophys. J. 265 (1983) L39]]

Hallmark signature of a SGWB signal: Quadrupole correlation among timing residuals.
Other systematic effects typically lead to monopole or dipole correlations (see Lecture 3B).
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Imprint of primordial GWs on the CMB

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Probe GWs with oscillation periods of billions of years! (Inflation, topological defects, ...)

• Temperature anisotropies • Polarization anisotropies • Spectral distortions
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Temperature anisotropies

[PLANCK Collaboration, cosmos.esa.int]

[Review of Particle Physics (2020), pdg.lbl.gov]

CMB: Baby picture of the early Universe,
surface of last scattering after recombination

Highly isotropic, temperature anisotropies:

Θ =
∆T
T̄
∼ 10−5 , T̄ ' 2.725 K (20)

Expand in spherical harmonics:

Θ(n) =
∞∑
`=0

+`∑
m=−`

Θ`mY`m(n) (21)

Power spectrum describing average Θ`m:

〈Θ`mΘ∗`′m′ 〉 = δ``′ δmm′ CTT` (22)

Tensor perturbations induce CTT` through the
Sachs–Wolfe effect (gravitational redshift):

Θ = −
∫ today

CMB
dλh′ij(η,x)ninj (23)
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Polarization anisotropies

[Hu, White: astro-ph/9706147]

Tensor perturbations → quadrupole temperature anisotropy
→ Thomson scattering results in linear CMB polarization

Decompose polarization field into E mode and B mode:

∇×E = 0 , ∇ ·B = 0 (24)

Possible sources:
E mode: Scalar and tensor perturbations
B mode: Lensed E modes (X) and tensor perturbations (?)

[Kamionkowski, Kovetz: Annual Review of Astronomy and Astrophysics 54 (2016) 227]

Strength of tensor perturbations on CMB scales in terms of tensor-to-scalar ratio r:

r =
Ph(k∗)
PR(k∗)

, 〈RR∗〉 =
2π2

k3 δ(3) PR(k) , 〈hijh
∗
ij〉 =

2π2

k3 δ(3) Ph(k) (25)

Best limit to date (PLANCK and BICEP/Keck): r(k∗ = 0.05 Mpc−1) < 0.044 at 95 % C. L.
[Tristram et al.: 2010.01139]
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Spectral distortions

[commons.wikimedia.org]

CMB: Best blackbody spectrum in nature

Tensor perturbations dissipate; energy transfer to
photons at z . 2× 106 when nγ constant leads to
µ-distortion: Bose–Einstein distribution with µ 6= 0:

f(E) =
1

e(E−µ)/T − 1
(26)

〈µ〉 =
∫

dk

k
W (k)Ph(k) (27)

[Kite, Ravenni, Patil, Chluba: 2010.00040]

Future CMB
spectrometers:
Bridge the gap between
cosmological and astro-
physical GW searches!

f ∼ 10−15 · · · 10−9 Hz
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Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21



Summary Lecture 1B

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

◦ Signal response quantified in terms of detector transfer / overlap reduction functions.

◦ Cross-correlation analysis to search for a stochastic GW signal with a detector network.

◦ Optimal SNR requires matched filter based on the actual signal → template banks.

◦ Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

◦ PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

◦ CMB: temperature / polarization anisotropies (B modes!), spectral µ-distortions.

◦ Meaning of h2ΩGW (X), experimental sensitivity curves in plots of h2ΩGW(f) (X).

End of Lecture 1B. Thanks a lot for your attention!

5. Summary 21/21


	GW interferometers
	Experimental sensitivity
	Pulsar timing arrays
	Cosmic microwave background
	Summary

