Gravitational Waves from the Early Universe

Lecture 1B: Gravitational Waves, Experiments

Kai Schmitz (CERN)

Chung-Ang University, Seoul, South Korea | June 2 – 4

GEO600 LIGO Hanford LIGO Livingston ZAGRA Operational Planned Gravitational Wave Observatories

Ground-based GW laser interferometers: Generation 1: GEO600, LIGO, TAMA, Virgo Generation 2: Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) / Virgo Generation 2.5: KAGRA (Kamioka Gravitational Wave Detector), underground and cryogenic

On the eve of multifrequency GW astronomy

Plus: AEDGE, AION, MAGIS, TaiJi, TianQin, ... Plus: Future measurements of CMB polarization and spectral distortions

Outline Lecture 1B

- 1. [GW interferometers](#page-4-0)
- 2. [Experimental sensitivity](#page-21-0)
- 3. [Pulsar timing arrays](#page-34-0)
- 4. [Cosmic microwave background](#page-47-0)

5. [Summary](#page-61-0)

Transient GW signals

[Ballmer, Mandic: Ann. Rev. Nucl. Part. Sci. **65** (2015) 555] [ligo.caltech.edu]

GW passing a Michelson interferometer Chirp signal in the LIGO / Virgo detectors

Transient GW signals

GW passing a Michelson interferometer Chirp signal in the LIGO / Virgo detectors

 $\overline{\bullet\bullet\bullet\circ\bullet\circ}$

Signal seen by the detector: Convolute h_{ij} with impulse response R^{ij} (detector geometry)

$$
s(t) = \int_{-\infty}^{\infty} dt' \int d^3x' R^{ij}(t', x') h_{ij}(t - t', x - x')
$$
 (1)

Transient GW signals

GW passing a Michelson interferometer Chirp signal in the LIGO / Virgo detectors

Signal seen by the detector: Convolute h_{ij} with impulse response R^{ij} (detector geometry)

$$
s(t) = \int_{-\infty}^{\infty} dt' \int d^3x' R^{ij}(t', x') h_{ij}(t - t', x - x')
$$
 (1)

Decompose incoming GW into plane-wave contributions with definite *f*, *p*, and *n*:

$$
h_{ij}(t,x) = \sum_{p=+,\times} \int_{-\infty}^{\infty} df \int d^2n \, h_p(f,n) \, e_{ij}^p(n) \, e^{2\pi i f(t-nx)} \tag{2}
$$

1. [GW interferometers](#page-4-0) 5*/***21**

 $\overline{\bullet\bullet\bullet\circ\bullet\circ}$

Detector response to the signal

Signal seen by the detector in the frequency domain:

$$
\tilde{s}(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, s(t) \, e^{-2\pi i f t} = \sum_{p=+,\times} \int d^2 n \, R_p(f, n) \, h_p(f, n) \tag{3}
$$

Detector response to the signal

Signal seen by the detector in the frequency domain:

$$
\tilde{s}(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, s(t) \, e^{-2\pi i f t} = \sum_{p=+,\times} \int d^2 n \, R_p(f, n) \, h_p(f, n) \tag{3}
$$

Antenna patterns: Graphs of $|R_p(f, n)|$ as functions *n* at fixed *f*.

Can be computed based on changes in the light-travel time between test masses at the end of the interferometer arms.

Detector response to the signal

Signal seen by the detector in the frequency domain:

$$
\tilde{s}(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, s(t) \, e^{-2\pi i f t} = \sum_{p=+,\times} \int d^2 n \, R_p(f, n) \, h_p(f, n) \tag{3}
$$

Antenna patterns: Graphs of $|R_p(f, n)|$ as functions n at fixed f .

Can be computed based on changes in the light-travel time between test masses at the end of the interferometer arms.

Signal response / detector transfer function: Average over the square of the antenna patterns.

$$
\mathcal{R} = \frac{1}{2} \sum_{p} \frac{1}{4\pi} \int d^2 n \, |R_p(f, n)|^2 \tag{4}
$$

Quantifies loss in sensitivity due to the fact that, on average, GWs do not arrive from the optimal direction.

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$ Noise characterized by detector noise power spectrum D_{noise} :

$$
\langle n^2(t) \rangle = \int_0^\infty df \, D_{\text{noise}}(f) \,, \qquad \langle \tilde{n}(f) \, \tilde{n}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, D_{\text{noise}}(f) \tag{5}
$$

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$ Noise characterized by detector noise power spectrum D_{noise} :

$$
\langle n^2(t) \rangle = \int_0^\infty df \, D_{\text{noise}}(f) \,, \qquad \langle \tilde{n}(f) \, \tilde{n}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, D_{\text{noise}}(f) \tag{5}
$$

Signal characterized by strain power spectrum S_h and detector transfer function \mathcal{R} :

$$
\langle s^2(t) \rangle = \int_0^\infty df \, \mathcal{R}(f) \, S_h(f) \, , \qquad \langle \tilde{s}(f) \, \tilde{s}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, \mathcal{R}(f) \, S_h(f) \qquad (6)
$$

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$ Noise characterized by detector noise power spectrum D_{noise} :

$$
\langle n^2(t) \rangle = \int_0^\infty df \, D_{\text{noise}}(f) \,, \qquad \langle \tilde{n}(f) \, \tilde{n}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, D_{\text{noise}}(f) \tag{5}
$$

Signal characterized by strain power spectrum S_h and detector transfer function \mathcal{R} :

$$
\langle s^2(t) \rangle = \int_0^\infty df \, \mathcal{R}(f) \, S_h(f) \, , \qquad \langle \tilde{s}(f) \, \tilde{s}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, \mathcal{R}(f) \, S_h(f) \qquad \textbf{(6)}
$$

Challenge: Signal looks like another form of noise. Therefore, extract SGWB signal from the noisy background based on: spectral properties, temporal modulations, null channels, etc.

 $0₀$ $0₀$ $0₀$

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$ Noise characterized by detector noise power spectrum D_{noise} :

$$
\langle n^2(t) \rangle = \int_0^\infty df \, D_{\text{noise}}(f) \,, \qquad \langle \tilde{n}(f) \, \tilde{n}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, D_{\text{noise}}(f) \tag{5}
$$

Signal characterized by strain power spectrum S_h and detector transfer function \mathcal{R} :

$$
\langle s^2(t) \rangle = \int_0^\infty df \, \mathcal{R}(f) \, S_h(f) \, , \qquad \langle \tilde{s}(f) \, \tilde{s}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, \mathcal{R}(f) \, S_h(f) \qquad \textbf{(6)}
$$

Challenge: Signal looks like another form of noise. Therefore, extract SGWB signal from the noisy background based on: spectral properties, temporal modulations, null channels, etc.

Single detector: Require $S_h \gtrsim D_{\text{noise}}/\mathcal{R}$ for detection.

Detector data stream composed of signal and noise contributions: $d(t) = s(t) + n(t)$ Noise characterized by detector noise power spectrum D_{noise} :

$$
\langle n^2(t) \rangle = \int_0^\infty df \, D_{\text{noise}}(f) \,, \qquad \langle \tilde{n}(f) \, \tilde{n}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, D_{\text{noise}}(f) \tag{5}
$$

Signal characterized by strain power spectrum S_h and detector transfer function \mathcal{R} :

$$
\langle s^2(t) \rangle = \int_0^\infty df \, \mathcal{R}(f) \, S_h(f) \, , \qquad \langle \tilde{s}(f) \, \tilde{s}^*(f') \rangle = \frac{1}{2} \, \delta(f - f') \, \mathcal{R}(f) \, S_h(f) \qquad \textbf{(6)}
$$

Challenge: Signal looks like another form of noise. Therefore, extract SGWB signal from the noisy background based on: spectral properties, temporal modulations, null channels, etc.

Single detector: Require $S_h \gtrsim D_{\text{noise}}/\mathcal{R}$ for detection. Detector network: Cross-correlate signal from detector pairs.

$$
S_{IJ} = \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} dt' d_I(t) Q_{IJ}(t-t') d_J(t') \quad (7)
$$

with filter function Q_{IJ} (depends only on $t-t^\prime$, highly localized in time). Match $Q_{I,J}$ so as to maximize the SNR.

 0 0 0 0 0 0

Expectation value of S_{IJ} , assuming uncorrelated detector noise, $\langle n_I n_J \rangle = 0$:

$$
\langle S_{IJ}\rangle = \frac{T}{2} \int_{-\infty}^{\infty} df \, \widetilde{Q}_{IJ}(f) \, \Gamma_{IJ}(f) \, S_h(f) \tag{8}
$$

Expectation value of S_{IJ} , assuming uncorrelated detector noise, $\langle n_I n_J \rangle = 0$:

$$
\langle S_{IJ}\rangle = \frac{T}{2} \int_{-\infty}^{\infty} df \, \widetilde{Q}_{IJ}(f) \, \Gamma_{IJ}(f) \, S_h(f) \tag{8}
$$

Fourier-transformed filter \widetilde{Q}_{IJ} and overlap reduction function Γ_{IJ} (generalization of \mathcal{R}):

$$
\Gamma_{IJ}(f) = \frac{1}{2} \sum_{p} \frac{1}{4\pi} \int d^2 n \, R_p^I(f, n) \, R_p^{J*}(f, n) \tag{9}
$$

Expectation value of S_{IJ} , assuming uncorrelated detector noise, $\langle n_I n_J \rangle = 0$:

$$
\langle S_{IJ}\rangle = \frac{T}{2} \int_{-\infty}^{\infty} df \, \widetilde{Q}_{IJ}(f) \, \Gamma_{IJ}(f) \, S_h(f) \tag{8}
$$

Fourier-transformed filter \widetilde{Q}_{IJ} and overlap reduction function Γ_{IJ} (generalization of \mathcal{R}):

$$
\Gamma_{IJ}(f) = \frac{1}{2} \sum_{p} \frac{1}{4\pi} \int d^2 n \, R_p^I(f, n) \, R_p^{J*}(f, n) \tag{9}
$$

Root mean square of the noise $N_{IJ} = S_{IJ} - \langle S_{IJ} \rangle$ (in the weak-signal approximation):

$$
\langle N_{IJ}^2 \rangle^{1/2} = \left[\langle S_{IJ}^2 \rangle - \langle S_{IJ} \rangle^2 \right]^{1/2} = \left[\frac{T}{4} \int_{-\infty}^{\infty} df \left| \widetilde{Q}_{IJ}(f) \right|^2 D_{\text{noise}}^I(f) D_{\text{noise}}^J(f) \right]^{1/2} (10)
$$

Expectation value of S_{IJ} , assuming uncorrelated detector noise, $\langle n_I n_J \rangle = 0$:

$$
\langle S_{IJ}\rangle = \frac{T}{2} \int_{-\infty}^{\infty} df \, \widetilde{Q}_{IJ}(f) \, \Gamma_{IJ}(f) \, S_h(f) \tag{8}
$$

Fourier-transformed filter \widetilde{Q}_{IJ} and overlap reduction function Γ_{IJ} (generalization of \mathcal{R}):

$$
\Gamma_{IJ}(f) = \frac{1}{2} \sum_{p} \frac{1}{4\pi} \int d^2 n \, R_p^I(f, n) \, R_p^{J*}(f, n) \tag{9}
$$

Root mean square of the noise $N_{IJ} = S_{IJ} - \langle S_{IJ} \rangle$ (in the weak-signal approximation):

$$
\langle N_{IJ}^2 \rangle^{1/2} = \left[\langle S_{IJ}^2 \rangle - \langle S_{IJ} \rangle^2 \right]^{1/2} = \left[\frac{T}{4} \int_{-\infty}^{\infty} df \left| \widetilde{Q}_{IJ}(f) \right|^2 D_{\text{noise}}^I(f) D_{\text{noise}}^J(f) \right]^{1/2} (10)
$$

Optimal filter that maximizes the signal-to-noise ratio $\varrho_{IJ} = \langle S_{IJ}\rangle / \langle N_{IJ}^2 \rangle^{1/2}$:

$$
\widetilde{Q}_{IJ}(f) \propto \frac{\Gamma_{IJ}(f) S_h(f)}{D_{\text{noise}}^I(f) D_{\text{noise}}^J(f)} \tag{11}
$$

Note: \widetilde{Q}_{IJ} requires knowledge of the signal one intends to measure \rightarrow template banks

1. [GW interferometers](#page-4-0) 8*/***21**

Overlap reduction functions

Normalization such that $\gamma_{IJ}(f=0) = 1$ for a pair of identical, co-located, co-aligned detectors with opening angle *δ* between their two interferometer arms:

$$
\gamma_{IJ}(f) = \frac{5}{\sin^2 \delta} \Gamma_{IJ} \tag{12}
$$

For a network of $I, J = 1, \cdots, N_{\text{det}}$ detectors:

$$
\varrho = \left[\sum_{J > I} \varrho_{IJ}^2 \right]^{1/2}, \qquad \varrho_{IJ} = \left[2 \, T \int_{\Delta f} df \, \frac{\Gamma_{IJ}^2(f) S_h^2(f)}{D_{\text{noise}}^I(f) \, D_{\text{noise}}^J(f)} \right]^{1/2} \tag{13}
$$

For a network of $I, J = 1, \cdots, N_{\text{det}}$ detectors:

$$
\varrho = \left[\sum_{J>I} \varrho_{IJ}^2 \right]^{1/2}, \qquad \varrho_{IJ} = \left[2 \, T \int_{\Delta f} df \, \frac{\Gamma_{IJ}^2(f) S_h^2(f)}{D_{\text{noise}}^I(f) \, D_{\text{noise}}^J(f)} \right]^{1/2} \tag{13}
$$

Effective strain noise power spectrum $S_{\text{noise}}^{\text{eff}}$ for the entire network:

$$
S_{\text{noise}}^{\text{eff}}(f) = \left[\sum_{J>I} \frac{\Gamma_{IJ}^2(f)}{D_{\text{noise}}^I(f) D_{\text{noise}}^J(f)} \right]^{-1/2}
$$

(14)

For a network of $I, J = 1, \cdots, N_{\text{det}}$ detectors:

$$
\varrho = \left[\sum_{J>I} \varrho_{IJ}^2 \right]^{1/2}, \qquad \varrho_{IJ} = \left[2 \, T \int_{\Delta f} df \, \frac{\Gamma_{IJ}^2(f) S_h^2(f)}{D_{\text{noise}}^I(f) \, D_{\text{noise}}^J(f)} \right]^{1/2} \tag{13}
$$

Effective strain noise power spectrum $S_{\text{noise}}^{\text{eff}}$ for the entire network:

$$
S_{\text{noise}}^{\text{eff}}(f) = \left[\sum_{J>I} \frac{\Gamma_{IJ}^2(f)}{D_{\text{noise}}^I(f) D_{\text{noise}}^J(f)} \right]^{-1/2}
$$

Express both signal and noise in terms of a GW energy density power spectrum:

$$
\Omega_{\text{signal}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_h(f), \quad \Omega_{\text{noise}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_{\text{noise}}^{\text{eff}}(f). \tag{15}
$$

 $\overline{\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet}$

(14)

For a network of $I, J = 1, \cdots, N_{\text{det}}$ detectors:

$$
\varrho = \left[\sum_{J>I} \varrho_{IJ}^2 \right]^{1/2}, \qquad \varrho_{IJ} = \left[2 \, T \int_{\Delta f} df \, \frac{\Gamma_{IJ}^2(f) S_h^2(f)}{D_{\text{noise}}^I(f) \, D_{\text{noise}}^J(f)} \right]^{1/2} \tag{13}
$$

Effective strain noise power spectrum $S_{\text{noise}}^{\text{eff}}$ for the entire network:

$$
S_{\text{noise}}^{\text{eff}}(f) = \left[\sum_{J>I} \frac{\Gamma_{IJ}^2(f)}{D_{\text{noise}}^I(f) D_{\text{noise}}^J(f)} \right]^{-1/2}
$$

Express both signal and noise in terms of a GW energy density power spectrum:

$$
\Omega_{\text{signal}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_h(f), \quad \Omega_{\text{noise}}(f) = \frac{2\pi^2}{3H_0^2} f^3 S_{\text{noise}}^{\text{eff}}(f). \tag{15}
$$

$$
\left| \varrho = \left[2 \, T \int_{\Delta f} df \left(\frac{\Omega_{\text{signal}}(f)}{\Omega_{\text{noise}}(f)} \right)^2 \right]^{1/2} \propto \sqrt{N_{\text{det}}(N_{\text{det}} - 1) \, N_{\text{bin}} \, T \, \delta f} \right| \tag{16}
$$

Integration over time and frequency boosts SNR by many orders of magnitude!

 $\overline{\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet\hspace{1.2cm}\bullet}$

(14)

Effective strain noise power spectra

Instantaneous sensitivity, no integration over time and frequency

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

¹All curves expressed in terms of $Ω$: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for D_{noise} : <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

¹All curves expressed in terms of $Ω$: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

Red curve: Effective strain noise

 $S_{\text{noise}}^{\text{eff}}(f) = D_{\text{noise}}(f) / |\Gamma(f)|$

 1 All curves expressed in terms of Ω: the GW energy density spectrum in units of the critical energy density ρ_c . ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

Red curve: Effective strain noise

 $S_{\text{noise}}^{\text{eff}}(f) = D_{\text{noise}}(f) / |\Gamma(f)|$

Green curve: Rescaled effective strain noise

$$
S_{\rm noise}^{\rm eff}(f)/\sqrt{N_{\rm det}(N_{\rm det}-1)\,T\,\delta f}
$$

 1 All curves expressed in terms of $Ω$: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

Red curve: Effective strain noise

 $S_{\text{noise}}^{\text{eff}}(f) = D_{\text{noise}}(f) / |\Gamma(f)|$

Green curve: Rescaled effective strain noise

 $S_{\rm noise}^{\rm eff}(f)/\sqrt{N_{\rm det}(N_{\rm det}-1)\,T\,\delta f}$

Black straight lines: Set of power-law curves that result in $\rho = 1$ based on Eq. [\(16\)](#page-21-1)

¹All curves expressed in terms of Ω: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

Red curve: Effective strain noise

 $S_{\text{noise}}^{\text{eff}}(f) = D_{\text{noise}}(f) / |\Gamma(f)|$

Green curve: Rescaled effective strain noise

 $S_{\rm noise}^{\rm eff}(f)/\sqrt{N_{\rm det}(N_{\rm det}-1)\,T\,\delta f}$

Black straight lines: Set of power-law curves that result in $\rho = 1$ based on Eq. [\(16\)](#page-21-1) Blue curve: Envelope \rightarrow power-law-integrated sensitivity (PLIS) curve

 $0₀$ $0₀$

¹All curves expressed in terms of Ω: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

Sensitivity curves 1 for the two-detector network aLIGO Hanford $+$ aLIGO Livingston: 2

Black curve: Detector noise spectrum

 $D_{\text{noise}}(f)$

Red curve: Effective strain noise

 $S_{\text{noise}}^{\text{eff}}(f) = D_{\text{noise}}(f) / |\Gamma(f)|$

Green curve: Rescaled effective strain noise

 $S_{\rm noise}^{\rm eff}(f)/\sqrt{N_{\rm det}(N_{\rm det}-1)\,T\,\delta f}$

Black straight lines: Set of power-law curves that result in $\rho = 1$ based on Eq. [\(16\)](#page-21-1) Blue curve: Envelope \rightarrow power-law-integrated sensitivity (PLIS) curve \rightarrow Power-law signals intersecting with the PLIS curve result in $\rho > 1$.

¹All curves expressed in terms of $Ω$: the GW energy density spectrum in units of the critical energy density $ρ_c$. ²Based on slightly obsolete data for *D_{noise}*: <https://dcc.ligo.org/LIGO-T0900288/public>

 $0₀$ $0₀$

Power-law-integrated sensitivity curves

Sensitivity integrated over time and frequency, starting point of phenomenological studies

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!³

 3 First indirect detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!³

 3 First indirect detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).

 0^o 0^o 0^o

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!³

Pulsars: Highly magnetized rotating dead stars (usually neutron stars but also white dwarfs) \circ Rotation periods of $10^{-3\cdots 1}\,\mathrm{s}.$ Accretion in close-binary systems \to millisecond pulsars

 3 First *indirect* detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!³

Pulsars: Highly magnetized rotating dead stars (usually neutron stars but also white dwarfs) \circ Rotation periods of $10^{-3\cdots 1}\,\mathrm{s}.$ Accretion in close-binary systems \to millisecond pulsars

 \circ Beamed radio pulses emitted from magnetic poles \rightarrow cosmic lighthouses

 3 First *indirect* detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).

Use an array of pulsars across the Milky Way to construct a galaxy-sized GW detector!³

Pulsars: Highly magnetized rotating dead stars (usually neutron stars but also white dwarfs)

- \circ Rotation periods of $10^{-3\cdots 1}\,\mathrm{s}.$ Accretion in close-binary systems \to millisecond pulsars
- \circ Beamed radio pulses emitted from magnetic poles \rightarrow cosmic lighthouses

Ultra-precise clocks in the sky! Look for tiny distortions caused by nanohertz GWs.

 3 First *indirect* detection of GWs from the orbital decay of the Hulse–Taylor binary (pulsar + neutron star).

Residuals in pulse times of arrival (TOAs):

$$
R^{(i)} = \text{TOA}_{\text{SSB}}^{(i)} - \text{TOA}_{\text{Model}}^{(i)}
$$

- Measure TOAs on earth and convert to TOAs at the solar-system barycenter (SSB)
- Compare to timing models for each pulsar (frequency and derivatives, position, proper motion, binary dynamics, relativistic effects, ...)

Residuals in pulse times of arrival (TOAs):

$$
R^{(i)} = \text{TOA}_{\text{SSB}}^{(i)} - \text{TOA}_{\text{Model}}^{(i)}
$$

- Measure TOAs on earth and convert to TOAs at the solar-system barycenter (SSB)
- Compare to timing models for each pulsar (frequency and derivatives, position, proper motion, binary dynamics, relativistic effects, ...)

Timing noise of an idealized PTA experiment: $D_{\text{noise}} = 2\,\sigma_t^2 \Delta T$

- 1*/*∆*T*: Cadence of the observations; typically, ∆*T* of the order of a few weeks.
- \circ σ_t : Root-mean-square error of the timing residuals; typically of the order of μ s.

 0^o 0^o 0^o

Residuals in pulse times of arrival (TOAs):

$$
R^{(i)} = \text{TOA}_{\text{SSB}}^{(i)} - \text{TOA}_{\text{Model}}^{(i)}
$$

- Measure TOAs on earth and convert to TOAs at the solar-system barycenter (SSB)
- Compare to timing models for each pulsar (frequency and derivatives, position, proper motion, binary dynamics, relativistic effects, ...)

Timing noise of an idealized PTA experiment: $D_{\text{noise}} = 2\,\sigma_t^2 \Delta T$

- 1*/*∆*T*: Cadence of the observations; typically, ∆*T* of the order of a few weeks.
- \circ σ_t : Root-mean-square error of the timing residuals; typically of the order of μ s.

Sensitive to GWs in the frequency range: from $f_{\min} \sim 1/T$ to $f_{\max} \sim 1/\Delta T$

 0^o 0^o 0^o

Residuals in pulse times of arrival (TOAs):

$$
R^{(i)} = \text{TOA}_{\text{SSB}}^{(i)} - \text{TOA}_{\text{Model}}^{(i)}
$$

- Measure TOAs on earth and convert to TOAs at the solar-system barycenter (SSB)
- Compare to timing models for each pulsar (frequency and derivatives, position, proper motion, binary dynamics, relativistic effects, ...)

Timing noise of an idealized PTA experiment: $D_{\text{noise}} = 2\,\sigma_t^2 \Delta T$

- 1*/*∆*T*: Cadence of the observations; typically, ∆*T* of the order of a few weeks.
- \circ σ_t : Root-mean-square error of the timing residuals; typically of the order of μ s.

Sensitive to GWs in the frequency range: from $f_{\min} \sim 1/T$ to $f_{\max} \sim 1/\Delta T$ Existing PTA Collaborations:

 $0₀$ $0₀$ $0₀$

Integrate metric perturbation along the geodesic of the pulse \rightarrow shift in pulsation frequency:

$$
\frac{\Delta \nu(t)}{\nu} = -H^{ij} \left[h_{ij}(t, x_e) - h_{ij}(t - D/c, x_p) \right], \qquad R(t) = \int_0^t dt' \, \frac{\Delta \nu(t')}{\nu} \tag{17}
$$

Two contributions: earth term, pulsar term (*Hij* : geometrical factor; *D*: pulsar distance)

Integrate metric perturbation along the geodesic of the pulse \rightarrow shift in pulsation frequency:

$$
\frac{\Delta \nu(t)}{\nu} = -H^{ij} \left[h_{ij}(t, x_e) - h_{ij}(t - D/c, x_p) \right], \qquad R(t) = \int_0^t dt' \, \frac{\Delta \nu(t')}{\nu} \tag{17}
$$

Two contributions: earth term, pulsar term (H^{ij} : geometrical factor; *D*: pulsar distance)

Cross-correlate the timing residuals of a pair of pulsars that is separated by an angle *ψ* in the sky:

$$
\langle R_I R_J \rangle \propto \Gamma_{IJ}(\psi) = \frac{\zeta_{IJ}(\psi)}{12\pi^2 f^2} \tag{18}
$$

Integrate metric perturbation along the geodesic of the pulse \rightarrow shift in pulsation frequency:

$$
\frac{\Delta \nu(t)}{\nu} = -H^{ij} \left[h_{ij}(t, x_e) - h_{ij}(t - D/c, x_p) \right], \qquad R(t) = \int_0^t dt' \, \frac{\Delta \nu(t')}{\nu} \tag{17}
$$

Two contributions: earth term, pulsar term (*Hij* : geometrical factor; *D*: pulsar distance)

Cross-correlate the timing residuals of a pair of pulsars that is separated by an angle *ψ* in the sky:

$$
\langle R_I R_J \rangle \propto \Gamma_{IJ}(\psi) = \frac{\zeta_{IJ}(\psi)}{12\pi^2 f^2} \tag{18}
$$

Earth term results in characteristic correlation:

$$
\zeta_{IJ}(\psi) = \frac{1}{2} \left[\delta_{IJ} + 1 + c_{\psi} \left(3 \ln c_{\psi} - \frac{1}{2} \right) \right]
$$
 (19)

with $c_{\psi} = (1 - \cos \psi)/2$. Hellings–Downs curve! [Hellings, Downs: Astrophys. J. 265 (1983) L39]]

 $0₀$ $0₀$ $0₀$

Integrate metric perturbation along the geodesic of the pulse \rightarrow shift in pulsation frequency:

$$
\frac{\Delta \nu(t)}{\nu} = -H^{ij} \left[h_{ij}(t, x_e) - h_{ij}(t - D/c, x_p) \right], \qquad R(t) = \int_0^t dt' \, \frac{\Delta \nu(t')}{\nu} \tag{17}
$$

Two contributions: earth term, pulsar term (*Hij* : geometrical factor; *D*: pulsar distance)

[Louise Mayor for physicsworld.com]

Cross-correlate the timing residuals of a pair of pulsars that is separated by an angle *ψ* in the sky:

$$
\langle R_I R_J \rangle \propto \Gamma_{IJ}(\psi) = \frac{\zeta_{IJ}(\psi)}{12\pi^2 f^2} \tag{18}
$$

Earth term results in characteristic correlation:

$$
\zeta_{IJ}(\psi) = \frac{1}{2} \left[\delta_{IJ} + 1 + c_{\psi} \left(3 \ln c_{\psi} - \frac{1}{2} \right) \right]
$$
 (19)

with $c_{\psi} = (1 - \cos \psi)/2$. Hellings–Downs curve! [Hellings, Downs: Astrophys. J. 265 (1983) L39]]

Hallmark signature of a SGWB signal: Quadrupole correlation among timing residuals. Other systematic effects typically lead to monopole or dipole correlations (see Lecture 3B).

 $0₀$ $0₀$

Imprint of primordial GWs on the CMB

Probe GWs with oscillation periods of billions of years! (Inflation, topological defects, ...)

Imprint of primordial GWs on the CMB

Probe GWs with oscillation periods of billions of years! (Inflation, topological defects, ...) • Temperature anisotropies • Polarization anisotropies • Spectral distortions

CMB: Baby picture of the early Universe, surface of last scattering after recombination

4. [Cosmic microwave background](#page-47-0) 18*/***21**

CMB: Baby picture of the early Universe, surface of last scattering after recombination Highly isotropic, temperature anisotropies:

$$
\Theta = \frac{\Delta T}{\bar{T}} \sim 10^{-5}, \qquad \bar{T} \simeq 2.725 \,\mathrm{K} \quad \text{(20)}
$$

CMB: Baby picture of the early Universe, surface of last scattering after recombination Highly isotropic, temperature anisotropies:

$$
\Theta = \frac{\Delta T}{\bar{T}} \sim 10^{-5}, \qquad \bar{T} \simeq 2.725 \,\mathrm{K} \quad (20)
$$

Expand in spherical harmonics:

$$
\Theta(n) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \Theta_{\ell m} Y_{\ell m}(n) \qquad (21)
$$

CMB: Baby picture of the early Universe, surface of last scattering after recombination Highly isotropic, temperature anisotropies:

$$
\Theta = \frac{\Delta T}{\bar{T}} \sim 10^{-5}, \qquad \bar{T} \simeq 2.725 \,\mathrm{K} \quad (20)
$$

Expand in spherical harmonics:

$$
\Theta(n) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \Theta_{\ell m} Y_{\ell m}(n) \qquad (21)
$$

Power spectrum describing average $\Theta_{\ell m}$:

$$
\langle \Theta_{\ell m} \Theta_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \, \delta_{m m'} \, C_{\ell}^{TT} \tag{22}
$$

CMB: Baby picture of the early Universe, surface of last scattering after recombination Highly isotropic, temperature anisotropies:

$$
\Theta = \frac{\Delta T}{\bar{T}} \sim 10^{-5}, \qquad \bar{T} \simeq 2.725 \,\mathrm{K} \quad (20)
$$

Expand in spherical harmonics:

$$
\Theta(n) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} \Theta_{\ell m} Y_{\ell m}(n) \qquad (21)
$$

Power spectrum describing average $\Theta_{\ell m}$:

$$
\langle \Theta_{\ell m} \Theta_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \, \delta_{m m'} \, C_{\ell}^{TT} \tag{22}
$$

Tensor perturbations induce C_{ℓ}^{TT} through the Sachs–Wolfe effect (gravitational redshift):

$$
\Theta = -\int_{\text{CMB}}^{\text{today}} d\lambda \, h'_{ij}(\eta, \mathbf{x}) \, n^i n^j \qquad (23)
$$

 0 0 0 0 0

Tensor perturbations \rightarrow quadrupole temperature anisotropy \rightarrow Thomson scattering results in linear CMB polarization

Tensor perturbations \rightarrow quadrupole temperature anisotropy \rightarrow Thomson scattering results in linear CMB polarization Decompose polarization field into E mode and B mode:

 $\nabla \times E = 0$, $\nabla \cdot B = 0$ (24)

Tensor perturbations \rightarrow quadrupole temperature anisotropy \rightarrow Thomson scattering results in linear CMB polarization Decompose polarization field into E mode and B mode:

 $\nabla \times E = 0$, $\nabla \cdot B = 0$ (24)

Possible sources: E mode: Scalar and tensor perturbations B mode: Lensed E modes (\checkmark) and tensor perturbations (?)

[Kamionkowski, Kovetz: Annual Review of Astronomy and Astrophysics **54** (2016) 227]

 $\overline{\bullet\bullet\bullet\circ\bullet\circ}$

4. [Cosmic microwave background](#page-47-0) 19*/***21**

Tensor perturbations \rightarrow quadrupole temperature anisotropy \rightarrow Thomson scattering results in linear CMB polarization Decompose polarization field into E mode and B mode:

 $\nabla \times E = 0$, $\nabla \cdot B = 0$ (24)

Possible sources: E mode: Scalar and tensor perturbations B mode: Lensed E modes (\checkmark) and tensor perturbations (?)

[Kamionkowski, Kovetz: Annual Review of Astronomy and Astrophysics **54** (2016) 227]

Strength of tensor perturbations on CMB scales in terms of tensor-to-scalar ratio *r*:

$$
r = \frac{\mathcal{P}_h(k_*)}{\mathcal{P}_R(k_*)}, \qquad \langle \mathcal{R}\mathcal{R}^* \rangle = \frac{2\pi^2}{k^3} \,\delta^{(3)}\,\mathcal{P}_R(k), \qquad \langle h_{ij}h_{ij}^* \rangle = \frac{2\pi^2}{k^3} \,\delta^{(3)}\,\mathcal{P}_h(k) \tag{25}
$$

Best limit to date (PLANCK and BICEP/Keck): $r(k_*=0.05\,{\rm Mpc}^{-1}) < 0.044$ at $95\,\%$ C. L. [Tristram et al.: 2010.01139]

 0^o 0^o 0^o

4. [Cosmic microwave background](#page-47-0) 19*/***21**

Spectral distortions

CMB: Best blackbody spectrum in nature

4. [Cosmic microwave background](#page-47-0) 20*/***21**

Spectral distortions

CMB: Best blackbody spectrum in nature

Tensor perturbations dissipate; energy transfer to photons at $z \lesssim 2 \times 10^6$ when n_γ constant leads to μ -distortion: Bose–Einstein distribution with $\mu \neq 0$:

$$
f(E) = \frac{1}{e^{(E-\mu)/T} - 1}
$$
 (26)

$$
\langle \mu \rangle = \int \frac{dk}{k} \, W(k) \, \mathcal{P}_h(k) \tag{27}
$$

Spectral distortions

CMB: Best blackbody spectrum in nature

Tensor perturbations dissipate; energy transfer to photons at $z \leq 2 \times 10^6$ when n_γ constant leads to μ -distortion: Bose–Einstein distribution with $\mu \neq 0$:

$$
f(E) = \frac{1}{e^{(E-\mu)/T} - 1}
$$
 (26)

$$
\langle \mu \rangle = \int \frac{dk}{k} \, W(k) \, \mathcal{P}_h(k) \tag{27}
$$

Future CMB spectrometers: Bridge the gap between cosmological and astrophysical GW searches!

 $f \sim 10^{-15} \cdots 10^{-9}$ Hz

 0^o 0^o 0^o

Take-home messages:

◦ The global network of GW detectors is growing; soon multifrequency GW astronomy.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.
- Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.
- Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...
- PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.
- Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...
- PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.
- CMB: temperature / polarization anisotropies (B modes!), spectral *µ*-distortions.

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.
- Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...
- PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.
- CMB: temperature / polarization anisotropies (B modes!), spectral *µ*-distortions.
- \circ Meaning of $h^2\Omega_{\rm GW}$ (\checkmark) , experimental sensitivity curves in plots of $h^2\Omega_{\rm GW}(f)$ (\checkmark) .

Take-home messages:

- The global network of GW detectors is growing; soon multifrequency GW astronomy.
- Signal response quantified in terms of detector transfer / overlap reduction functions.
- Cross-correlation analysis to search for a stochastic GW signal with a detector network.
- \circ Optimal SNR requires matched filter based on the actual signal \rightarrow template banks.
- Different types of sensitivity curves: (effective) strain noise, power-law-integrated, ...
- PTAs seek to measure Hellings–Downs correlation among pulsar timing residuals.
- CMB: temperature / polarization anisotropies (B modes!), spectral *µ*-distortions.
- \circ Meaning of $h^2\Omega_{\rm GW}$ (\checkmark) , experimental sensitivity curves in plots of $h^2\Omega_{\rm GW}(f)$ (\checkmark) .

End of Lecture 1B. Thanks a lot for your attention!