
Introduction to token-based AuthN/Z with
OAuth/OpenID Connect and INDIGO IAM

Andrea Ceccanti
INFN CNAF

WLCG CE Hackathon
June, 3rd 2021

Getting an account
on WLCG IAM

Getting an account on WLCG IAM
Please apply for an account in the WLCG IAM instance (if you haven’t an account
already)

https://wlcg.cloud.cnaf.infn.it

Click on the “Sign in with CERN SSO” button and fill in the registration form,
putting “WLCG CE Hackathon” in the request notes.

3

https://wlcg.cloud.cnaf.infn.it
https://wlcg.cloud.cnaf.infn.it

Getting tokens out of WLCG IAM
https://indigo-iam.github.io/docs/v/current/user-guide/
getting-a-token.html

In order to submit jobs to the HTCondor CE, your token will
require the following scopes:

• compute.create, compute.modify, compute.cancel, compute.read

Access to these scopes is limited to members of the wlcg/
pilots group

Submit a group membership request from the IAM dashboard
if you’re not already member of the group

4

https://indigo-iam.github.io/docs/v/current/user-guide/getting-a-token.html
https://indigo-iam.github.io/docs/v/current/user-guide/getting-a-token.html
https://indigo-iam.github.io/docs/v/current/user-guide/getting-a-token.html
https://indigo-iam.github.io/docs/v/current/user-guide/getting-a-token.html

Click the “Join groups”
button

Select wlcg and wlcg/pilots
 from the group list

Select wlcg and wlcg/pilots
 from the group list

You won’t be allowed to request membership if you
are already a member of those groups

Registering a client with oidc-agent
1. Install oidc-agent (see https://indigo-dc.gitbook.io/oidc-agent/installation/

install)

2. Register a new client for the hackathon:
$ eval $(oidc-keychain)
$ oidc-gen -w device hackathon
(select the wlcg issuer and type in ‘max’ when prompted about which scopes should be
requested)

3. Get a token

$ oidc-token -s openid -s compute.modify -s compute.create hackathon

7

https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install

Registering a client with oidc-agent
1. Install oidc-agent (see https://indigo-dc.gitbook.io/oidc-agent/installation/

install)

2. Register a new client for the hackathon:
$ eval $(oidc-keychain)
$ oidc-gen -w device hackathon
(select the wlcg issuer and type in ‘max’ when prompted about which scopes should be
requested)

3. Get a token

$ oidc-token -s openid -s compute.modify -s compute.create hackathon

7

If you dont’ provide scope arguments you will
get a very privileged token with all the scopes

your client is allowed to request.
 Don’t do this, limit the scope of the tokens as

much as possible

https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install
https://indigo-dc.gitbook.io/oidc-agent/installation/install

Example: getting a token with oidc-agent

8

What happens behind the scenes
oidc-agent registers a new client and after authenticating the user and getting
his/her consent to access the information linked to the requested scopes, it
stores a refresh token locally together with the client configuration and
encrypts everything using a user provided password.

This refresh token is then used to request new tokens from IAM as needed

9

A brief introduction to
OAuth, OpenID Connect and JWTs

Objective: evolution of the WLCG AAI beyond X.509

11

Token-based AuthN/Z for WLCG
In order to access resources/services, a client
application needs an access token

The token is obtained from a VO (which acts as
an OAuth Authorization Server) using standard
OAuth/OpenID Connect flows

Authorization is then performed at the services
leveraging info extracted from the token:

• Identity attributes: e.g., groups

• OAuth scopes: capabilities linked to access tokens at
token creation time

12

Identity-based vs Scope-based Authorization
Identity-based authorization: the token
brings information about attribute ownership
(e.g., groups/role membership), the service
maps these attributes to a local authorization
policy

Scope-based authorization: the token brings
information about which actions should be
authorized at a service, the service needs to
understand these capabilities and honor
them. The authorization policy is managed at
the VO level

13

{
“iss”: “https://cms.wlcg.example”,
…
“wlcg.groups”: “/cms”

}

{
“iss”: “https://cms.wlcg.example”,
…
“scope”: “storage.read:/ storage.modify:/store”

}

authZ
decision

local policy

authZ
decision

token claims

token claims

https://cms.wlcg.example
https://cms.wlcg.example
https://cms.wlcg.example
https://cms.wlcg.example

Identity-based vs Scope-based Authorization

14

scope-based authZ

identity-based authZ

* Slide courtesy of B. Bockelman

The two models can
coexist, even in the
context of the same
application!

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 15

One slide summary
• To access computing and storage resources in the WLCG today you use a VOMS proxy,

which provides information about who you are, for which VO you’re acting and what you
can do on the infrastructure (i.e., VOMS groups and roles)

• In the near future we will use tokens, which will provide more or less the same information

• Tokens are obtained from a VO token issuer (e.g., IAM) using OpenID Connect

• Tokens are sent to services/resources following OAuth recommendations (e.g., embedded
in the header or an HTTP request)

• Tokens are self-contained, i.e. their integrity and validity can be verified locally with no
callback to the token issuer

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 16

OAuth roles
• Resource owner

- A user that owns resources hosted at a service

• Client
- An application that wants to have access to user resources

• Authorization server
- A service that authenticates users and client applications and issues

access tokens according to some policy

• Resource server
- A service that holds protected resources and grants access based

on access tokens issued by the authorization server

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 17

OAuth/OpenID Connect actors and roles

Actor Role Example

Authorization Server (AS) Asserting party WLCG IAM instance

Resource Server (RS) Relying party HTCondor job submission API

Client Relying party
Experiment framework (e.g.,

PANDA)

Resource Owner Subject A registered WLCG IAM user

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 18

OAuth client registration
• In OAuth clients that interact with an Authorization Server (AS)

need to be registered

• When a client is registered, it typically receives the client
credentials

- client_id: the client “username”

- client_secret: the client “password”

• Credentials are required in some OAuth/OpenID Connect flows or
to access specific endpoints, where different privileges may be
assigned to different clients

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 19

OAuth client types
https://tools.ietf.org/html/rfc6749#section-2.1

• confidential: Clients capable of maintaining the confidentiality of their
credentials (e.g., client implemented on a secure server with restricted access
to the client credentials), or capable of secure client authentication using
other means

• public: Clients incapable of maintaining the confidentiality of their
credentials (e.g., clients executing on the device used by the resource owner,
such as an installed native application or a web browser-based application),
and incapable of secure client authentication via any other means.

https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-2.1

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 20

Handling client credentials
• Client credentials must be maintained confidential

- not stored in Docker images or source code

• use ENV variables or other secret management mechanisms to pass secrets to your application

• Follow recommendations in the client app security section of the
OAuth security recommendations

- https://tools.ietf.org/html/rfc6819#section-5.3

https://tools.ietf.org/html/rfc6819#section-5.3
https://tools.ietf.org/html/rfc6819#section-5.3

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 21

Client registration in practice
• To register a new client in IAM, follow the instructions in the

documentation:

- https://indigo-iam.github.io/docs/v/current/user-guide/client-registration.html

• Client registration is necessary to integrate any application that needs
to “drive” an authorization flow

- i.e., if your app needs to show a “Login with WLCG IAM” button, i.e. needs to
authenticate users, you need to register a client

• For protected resources (APIs) integration, registration is NOT needed

https://indigo-iam.github.io/docs/v/current/user-guide/client-registration.html
https://indigo-iam.github.io/docs/v/current/user-guide/client-registration.html

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 22

OAuth/OpenID Connect grant types

Authorization grant types

=

Authorization Flows

=

Ways for an application to get tokens

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 23

OAuth/OpenID Connect grant types
Grant Type Context Client type

Authorization code Server-side apps Confidential

Implicit Client-side, Javascript apps Public

Device code Limited-input devices, CLIs Confidential

Resource owner password
credentials

(aka password)

Trusted apps, CLIs Confidential

Client credentials Server-side apps Confidential

Refresh token Server-side apps Confidential

Token exchange Server-side apps Confidential

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 23

OAuth/OpenID Connect grant types
Grant Type Context Client type

Authorization code Server-side apps Confidential

Implicit Client-side, Javascript apps Public

Device code Limited-input devices, CLIs Confidential

Resource owner password
credentials

(aka password)

Trusted apps, CLIs Confidential

Client credentials Server-side apps Confidential

Refresh token Server-side apps Confidential

Token exchange Server-side apps Confidential

These are the main grant types that will be used in WLCG

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 24

Authorization code flow
• The recommended flow for server-side applications that can maintain

the confidentiality of client credentials

• Allows an application to obtain tokens to act on behalf of a user for a
potentially unbounded amount of time

• See more on this flow in the RFC:

- https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

- https://datatracker.ietf.org/doc/html/rfc6749#page-24

https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://datatracker.ietf.org/doc/html/rfc6749#page-24
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://datatracker.ietf.org/doc/html/rfc6749#page-24

25

Web application: authorization code flow

IAM

Home IdP

Web
App

A Web App integrates with IAM to
delegate user authentication

management and obtain
authorization information

26

Web application: authorization code flow

OAuth and OpenID connect
provide the

authorization code flow
 in support of this integration

use case

IAM

Home IdP

Web
App

27

Web application: authorization code flow

IAM

Home IdP

Web
App

User points its browser to web app,
which redirects back to IAM for

authentication

28

Web application: authorization code flow

IAM

Home IdP

Web
App

User points its browser to web app,
which redirects back to IAM for

authentication

authorization
request

29

Web application: authorization code flow

IAM

Home IdP

Web
App

This authorization request starts the
authorization flow, and includes

parameters (e.g., OAuth scopes) that
will influence which information is

returned by IAM

authorization
request

30

Web application: authorization code flow

IAM

Home IdP

Web
App

authorization
request User does not have a valid session at

IAM, so IAM shows the login page

31

Web application: authorization code flow

IAM

Home IdP

Web
App

authorization
request User does not have a valid session at

IAM, so IAM shows the login page

32

Web application: authorization code flow

IAM

Home IdP

Web
App

authorization
request User does not have a valid session at

IAM, so IAM shows the login page
User selects EduGAIN,
and chooses his home
IDP for authentication

33

Web application: authorization code flow

IAM

Home IdP

Web
App

authorization
request User does not have a valid session at

IAM, so IAM shows the login page

34

Web application: authorization code flow

IAM

Home IdP

Web
App

User is redirected to home IDP
for authentication

35

Web application: authorization code flow

IAM

Home IdP

Web
App

User is redirected to home IDP
for authentication

36

Web application: authorization code flow

IAM

Home IdP

Web
App

Authentication
assertion

Home IDP authenticates user
and sends back an authentication

assertion, via redirection and possibly
other interactions between IAM and

the IDP

37

Web application: authorization code flow

IAM

Home IdP

Web
App

IAM validates the assertion,
the user is a registered one, so IAM

shows a “Give consent” page

38

Web application: authorization code flow

IAM

Home IdP

Web
App

IAM validates the assertion,
the user is a registered one, so IAM

shows a “Give consent” page

39

Web application: authorization code flow

IAM

Home IdP

Web
App

IAM generates an
authorization code

and sends it back to web app using an
HTTP redirect

40

Web application: authorization code flow

IAM

Home IdP

Web
App

id

The Web App exchanges the
authorization code with

a couple of tokens:
an access token and

an id token

41

Web application: authorization code flow

IAM

Home IdP

Web
App

id
In IAM,

both tokens are
JWT tokens.

42

Web application: authorization code flow

IAM

Home IdP

Web
App

id
The access token
provides (mainly)

authorization
information

43

Web application: authorization code flow

IAM

Home IdP

Web
App

id The id token provides
(mainly) authentication

information

44

Web application: authorization code flow

IAM

Home IdP

Web
App

id

Both tokens are validated following
to the JWT and OpenID Connect
guidelines, checking temporal

validity,
token signature, audience, etc…

45

Web application: authorization code flow

IAM

Home IdP

Web
App

Additional information about the
user can be requested by querying

the /userinfo endpoint
and providing the just obtained

access token
for authentication/authorization

purposes

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 46

Authorization code flow in practice
• In practice, decent OAuth/OpenID Connect client libraries implement all the

above behind the scenes.

• As an example, Apache mod_auth_openidc requires the following information to
enable a working OpenID Connect integration

- The OpenID Connect provider discovery/metadata URL

- Client credentials

• The library then takes care of exchanging messages with the OpenID provider,
implementing verification checks, and provides the obtained authentication/
authorization information to the protected web application

- typically via env variables or HTTP headers

https://github.com/zmartzone/mod_auth_openidc
https://github.com/zmartzone/mod_auth_openidc

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 47

Refresh token flow
• Used by a client to refresh an access token that is about to expire using

a refresh token obtained in a former authorization flow

• Authenticated call to the IAM/AS token endpoint

- Produces a new access token and possibly an updated refresh toke

• The scope request parameter can be used to attenuate the token
privileges, by requesting a subset of the scopes linked to user
authorization grant

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 48

Refresh token flow request: example

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 49

OAuth/OpenID Connect provider metadata
• OAuth & OpenID Connect provide a standard way to expose the authorization server/OpenID

provider configuration to clients

• Information is published at a well-known endpoint for the server, e.g.:

- https://dodas-iam.cloud.cnaf.infn.it/.well-known/openid-configuration

• Clients can use this information to know about

- location of key material used to sign/encrypt tokens

- supported grant types/authorization flows

- endpoint locations

- supported claims

- …

• and implement automatic client configuration

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 50

OAuth/OpenID Connect provider metadata

Example metadata document:

https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration

https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://wlcg.cloud.cnaf.infn.it/.well-known/openid-configuration

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 51

OAuth/OIDC scopes
• OAuth provides scopes as a standard mechanism to express authorization permissions

granted to client applications

• In practice, scopes are a set of strings included in an access token that limit what are the
operations that can be authorized by clients presenting such access token
- User consent is based on scopes requested

• OAuth scopes are commonly used in industry to define the authorization on service
APIs. Examples:
- https://api.slack.com/docs/oauth-scopes

- https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
#available-scopes

- https://developers.google.com/identity/protocols/googlescopes

https://api.slack.com/docs/oauth-scopes
https://api.slack.com/docs/oauth-scopes

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 52

Standard commonly used OAuth/OIDC scopes

• openid: signals that the client wants to receive authentication
information about the user

• profile: used to request profile information (name, address and other
information)

• email: used to request access to the user’s email (name, address)

• offline_access: used to request refresh tokens

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 53

WLCG profile OAuth/OIDC scopes
• wlcg.groups: used to request the inclusion of group information in

tokens

• storage.read, storage.modify, storage.create: these scopes are
used to manage access to WLCG storage

• compute.read, compute.modify, compute.create, compute.cancel:
these scopes are used to manage access to WLCG computing
resources

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 54

OAuth bearer token usage
• There’s a standard that defines how to send tokens to resource servers

• Typically, tokens are sent in the Authorization HTTP header, following
the rules defined in RFC 6750, as in the following example HTTP request

GET / HTTP/1.1

Host: apache.test.example

Authorization: Bearer eyJraWQiOiJy…rYI

User-Agent: curl/7.65.3

Accept: */*

The token!

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 55

JSON Web Tokens: definition
Citing RFC 7519:

• JSON Web Token (JWT) is a compact, URL-safe means of representing
claims to be transferred between two parties.

• The claims in a JWT are encoded as a JSON object that is used as the
payload of a JSON Web Signature (JWS) structure OR as the plaintext
of a JSON Web Encryption (JWE) structure, enabling the claims to be
digitally signed or integrity protected with a Message
Authentication Code (MAC) and/or encrypted.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 56

JWT
Citing RFC 7519:

• A JWT is represented as a sequence of URL-safe parts separated by
period ('.') characters. Each part contains a base64url-encoded value.

• The number of parts in the JWT is dependent upon the representation
of the resulting JSON Web Signature (JWS) using the JWS Compact
Serialization or JSON Web Encryption (JWE) using the JWE Compact
Serialization.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 57

JWT: Header.Body.Signature
eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJ3bGNnLnZlciI6IjEuMCIsInN
1YiI6IjI0MTY4N2U4LTUzNzQtNDU0OS1iOWY2LWEzODY2ZjBiZjZkYSIsImF1ZCI6I
mh0dHBzOlwvXC93bGNnLmNlcm4uY2hcL2p3dFwvdjFcL2FueSIsIm5iZiI6MTYxMDk
4MzAzOCwic2NvcGUiOiJvcGVuaWQgcHJvZmlsZSB3bGNnLmdyb3VwcyIsImlzcyI6I
mh0dHBzOlwvXC9pYW0tZXNjYXBlLmNsb3VkLmNuYWYuaW5mbi5pdFwvIiwiZXhwIjo
xNjEwOTg2NjM4LCJpYXQiOjE2MTA5ODMwMzgsImp0aSI6IjA5NjIwZTQ3LWE5NTQtN
GZjNS1hMzMxLTE1NDBiMmU0MjYzYyIsImNsaWVudF9pZCI6IjEyMDIwYjM1LTQ0ZTI
tNDljYS1hODU2LWQwNzE2OTUyNzkwZCIsIndsY2cuZ3JvdXBzIjpbIlwvZXNjYXBlI
iwiXC9lc2NhcGVcL2NtcyIsIlwvZXNjYXBlXC9waWxvdHMiLCJcL2VzY2FwZVwveGZ

lcnMiXX0.b64QOAjMoQfcJtin6hTLxtUepqjbbZ9pmb4xp5MoXeM3d4TyY1OIyQtcg
eZl4_mAzc22thTLbtu675xM7LswfrqFdc9eNPqi2VQzpdYae4S-
bK_3r9Dev-8o7PKiHNLtytNTK6Djre8WQF2TUX-oHsDqP2EJDskuqu-GAdhjLVI

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 58

JWS compact serialization form
• From https://tools.ietf.org/html/rfc7515#section-3.1

In the JWS Compact Serialization, a JWS is represented as the
concatenation:

BASE64URL(UTF8(JWS Protected Header)) || '.' ||

BASE64URL(JWS Payload) || '.' ||

BASE64URL(JWS Signature)

https://tools.ietf.org/html/rfc7515#section-3.1
https://tools.ietf.org/html/rfc7515#section-3.1

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 59

JWT: Header.Body.Signature

{
 "kid": "rsa1",
 "alg": "RS256"
}

{
 "wlcg.ver": "1.0",
 "sub": "241687e8-5374-4549-b9f6-a3866f0bf6da",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1610983038,
 "scope": "openid profile wlcg.groups",
 "iss": "https://iam-escape.cloud.cnaf.infn.it/",
 "exp": 1610986638,
 "iat": 1610983038,
 "jti": "09620e47-a954-4fc5-a331-1540b2e4263c",
 "client_id": "12020b35-44e2-49ca-a856-d0716952790d",
 "wlcg.groups": [
 "/escape",
 "/escape/cms",
 "/escape/pilots",
 "/escape/xfers"
]
}

Header Body Signature

b64QOAjMoQfcJtin6hTLxtUep
qjbbZ9pmb4xp5MoXeM3d4TyY1
OIyQtcgeZl4_mAzc22thTLbtu
675xM7LswfrqFdc9eNPqi2VQz
pdYae4S-
bK_3r9Dev-8o7PKiHNLtytNTK
6Djre8WQF2TUX-
oHsDqP2EJDskuqu-GAdhjLVI

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Andrea Ceccanti - ESCAPE AAI Integration Workshop 60

JWT claim names
• Registered claim names (i.e. a set of basic claims defined by the JWT standard

- “iss” (Issuer): the principal that issued the JWT (e.g., IAM ESCAPE)

- “sub” (Subject): the principal that is the subject of the JWT (e.g., a unique id linked to an IAM account)

- “aud” (Audience): identifies the recipients that the JWT is intended for (e.g., RUCIO)

- “exp” (Expiration time): identifies the expiration time on or after which the JWT MUST NOT be accepted for processing

- “nbf” (Not before): identifies the time before which the JWT MUST NOT be accepted for processing

- “iat” (Issued at): identifies the time at which the JWT was issued

- “jti” (JWT ID): provides a unique identifier for the JWT

• Public claim names

- Either a registered public claim name or one that has a collision-resistant name

• Private claim names

- Claim names that are not registered or public (i.e. are not collision-resistant)

https://tools.ietf.org/html/rfc7519#section-4.1
https://www.iana.org/assignments/jwt/jwt.xhtml#claims
https://tools.ietf.org/html/rfc7519#section-4.1
https://www.iana.org/assignments/jwt/jwt.xhtml#claims

The WLCG JWT profile

The WLCG JWT profile
How is authentication and
authorization information encoded
in identity and access tokens?

How is trust established between
parties exchanging tokens?

What’s the recommended token
lifetime?

62

Approach:
rely on existing standards as much as possible,

extend only when needed

https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I

WLCG JWT profile: glossary
Define common terms and
meaning

Leverage standard definitions
wherever possible

Map general concepts to our use
cases

63

WLCG JWT profile: token claims
What are the required claims to be included in access tokens and ID tokens, and
what is the meaning.

Common claims: claims commons to access and ID tokens

ID token claims: claims specific to ID tokens (mainly focusing on user authentication
and identity)

Access token claims: claims specific to access tokens (mainly focusing on
authorization capabilities or attributes)

The profile mostly reuses existing, standard claims, with some WLCG specific
additions. Additional, application-specific claims are allowed

64

WLCG specific token claims
wlcg.ver: the version of the WLCG token profile the relying party must
understand to validate the token. Example:

wlcg.ver = “WLCG:1.0”

wlcg.groups: group information about an authenticated end-user, following a
UNIX-like path syntax. Example:

wlcg.groups = {“/cms”, “/cms/itcms”}

65

Other claims used in the profile come from
JWT and OpenID connect core standard

https://tools.ietf.org/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html

Scope-based authorization
OAuth provides scopes as a standard mechanism to express authorization
permissions granted to client applications.

In practice, scopes are a set of strings included in an access token that limit what are
the operations that can be authorized by clients presenting such access token.

OAuth scopes are commonly used in industry to define the authorization on service
APIs. Examples:

https://api.slack.com/docs/oauth-scopes

https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-
oauth-apps/#available-scopes

https://developers.google.com/identity/protocols/googlescopes

66

https://api.slack.com/docs/oauth-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developers.google.com/identity/protocols/googlescopes
https://api.slack.com/docs/oauth-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developers.google.com/identity/protocols/googlescopes

WLCG OAuth scopes
Building on the SciTokens experience, define scopes that would match our
computing use-cases.

First use case: storage access

storage.read: Read data. Only applies to “online” resources such as disk (as opposed to “nearline” such as
tape where the storage.stage authorization should be used in addition).

storage.modify: Change data. This includes renaming files and writing data. This permission includes
overwriting or replacing stored data in addition to deleting or truncating data.

storage.create: Upload data. This includes renaming files if the destination file does not already exist. This
authorization DOES NOT permit overwriting or deletion of stored data.

storage.stage: Cause data to be staged from a nearline resource to an online resource.

67

https://scitokens.org/
https://scitokens.org/

Storage scopes and resource paths
Storage scopes may additionally provide a resource path*, which further limits the
authorization. The resource path is provided respecting the following format:

scope:path

Examples:

storage.read:/

storage.modify:/protected

68 * the path is required for selected scopes, more details in the profile

Path semantics
Following the Scitokens model, permissions granted on a path apply transitively
to subpaths, e.g.:

storage.read:/cms

grants read access to the /cms directory and to all its content, but does not grant
read access to the /atlas directory.

This approach is not equivalent with POSIX semantics, but matches well with our
experiments data access authorization models.

69

Path semantics
Following the Scitokens model, permissions granted on a path apply transitively
to subpaths, e.g.:

storage.read:/cms

grants read access to the /cms directory and to all its content, but does not grant
read access to the /atlas directory.

This approach is not equivalent with POSIX semantics, but matches well with our
experiments data access authorization models.

69

Note that implementing this semantic is up to
client applications, i.e. dCache, DPM, EOS, StoRM,

XRootD, etc…., the token just provides a (signed) string!

Scope-based group selection
Use scopes to implement a group selection mechanism for groups equivalent to
the one provided by VOMS, following the approach outlined in the OpenID
Connect standard.

Two types of groups:

• Default groups: whose membership is always asserted (similar to VOMS groups)

• Optional groups: whose membership is asserted only when explicitly requested by the
client application (similar to VOMS roles)

70

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Scope-based group selection
A parametric wlcg.groups scope is introduced with the following form:

wlcg.groups[:<group_name>]?

With the following rules:

• If the scope does not have the parametric part, i.e. its value is wlcg.groups, the authorization
server will return the list of default groups for the user being authenticated for the target
client.

• if the scope is parametric, i.e. it has the form wlcg.groups:<group_name>, in addition to the
default groups as described in the previous point, the authorization server will also return
the requested group as a value in the wlcg.groups claim if the user is member of such
group.

71

Scope-based group selection
…with the following rules:

• To request multiple groups, multiple wlcg.groups:<group_name> scopes are included in the
authorization request

• The order of the groups in the returned wlcg.groups claim complies with the order in which
the groups were requested

• the returned groups claim will not contain duplicates

This seems complex, but it’s the attribute selection mechanism we use everyday
with VOMS

72

Scope-based group selection
…with the following rules:

• To request multiple groups, multiple wlcg.groups:<group_name> scopes are included in the
authorization request

• The order of the groups in the returned wlcg.groups claim complies with the order in which
the groups were requested

• the returned groups claim will not contain duplicates

This seems complex, but it’s the attribute selection mechanism we use everyday
with VOMS

72

Note that implementing this semantic is (mostly) up to
the WLCG AuthZ server (i.e., IAM).

Scope-based group selection: examples
An authorization request with the following scope:

scope=wlcg.groups:/cms/uscms wlcg.groups:/cms/ALARM wlcg.groups

will return the following wlcg.groups claim

"wlcg.groups": ["/cms/uscms","/cms/ALARM", “/cms"]

assuming /cms is the only default group defined at the authorization server

73

Trust & security
The profile document also provides recommendations on token lifetimes and
trust establishment and other important aspects

74 * Slide courtesy of H. Short

https://docs.google.com/document/d/1cNm4nBl9ELhExwLxswpxLLNTuz8pT38-b_DewEyEWug/edit#heading=h.3sywvn92h9qr
https://docs.google.com/document/d/1cNm4nBl9ELhExwLxswpxLLNTuz8pT38-b_DewEyEWug/edit#heading=h.3sywvn92h9qr

Supporting the WLCG JWT
profile

What does it mean supporting the WLCG profile?
Depends on the role of your service:

• OAuth resource server
- The typical example is an HTTP Restful API
- Does not need the ability to start an OAuth/OpenID Connect authentication flow

- Does not need to be registered in IAM

- Needs to extract token from incoming requests and validate token and map authn/authz info in the token to local authz
enforcement

• OAuth/OpenID Connect client:
- The typical example is a Web application (a portal) that wants to delegate authentication to IAM

- Needs to be registered in IAM

- Needs the ability to start OAuth/OpenID Connect auhn/z flow, store securely client credentials, validate tokens, refresh them when
needed …

• Some services will naturally fit in both roles defined above

• e.g., RUCIO, FTS, dCache

76

What does it mean supporting the WLCG profile?
As an OAuth resource server (RS):

• Ability to extract an access token from an incoming HTTP request

• Ability to parse and validate the incoming access token
- identify if it has been issue by a trusted and recognized authorization server

- verify temporal validity

- verify signature, following OAuth/OIDC conventions

• Ability to honour access token audience restrictions
- the RS needs the ability to identity itself with (one or multiple) audience labels and honour audience restrictions in

access tokens

• Ability to map defined scopes to local authZ
- e.g., storage.read:/folder on a storage area grants read access to the /folder part of the namespace (including sub-

directories)

• Ability to map group-based to local authZ
- e.g., /cms group membership grants read access to the /cms namespace

77

What does it mean supporting the WLCG profile?
As an OAuth resource server (RS):

• Ability to extract an access token from an incoming HTTP request

• Ability to parse and validate the incoming access token
- identify if it has been issue by a trusted and recognized authorization server

- verify temporal validity

- verify signature, following OAuth/OIDC conventions

• Ability to honour access token audience restrictions
- the RS needs the ability to identity itself with (one or multiple) audience labels and honour audience restrictions in

access tokens

• Ability to map defined scopes to local authZ
- e.g., storage.read:/folder on a storage area grants read access to the /folder part of the namespace (including sub-

directories)

• Ability to map group-based to local authZ
- e.g., /cms group membership grants read access to the /cms namespace

77

This is typically
sorted out by
OAuth/OIDC

libraries

What does it mean supporting the WLCG profile?
As an OpenID Connect client:

• Ability to store client credentials securely

• Ability to start and manage an OAuth/OpenID Connect flow to obtain tokens from the
Authorization Server (i.e., IAM)
- Authorization code flow, for most use cases

- Refresh token flow, to refresh access tokens about the expire

- Client credentials flow, to obtain tokens linked not linked to user identities, but to the service itself

• Ability to parse and validate ID tokens resulting from OpenID Connect authentication flows in
compliance with the OpenID connect spec

• Ability to honour audience restrictions
- the ability to identity itself with (one or multiple) audience labels and honour audience restrictions in ID

tokens

• (Optional) Ability to implement Level Of Assurance (LoA) policies

78

What does it mean supporting the WLCG profile?
As an OpenID Connect client:

• Ability to store client credentials securely

• Ability to start and manage an OAuth/OpenID Connect flow to obtain tokens from the
Authorization Server (i.e., IAM)
- Authorization code flow, for most use cases

- Refresh token flow, to refresh access tokens about the expire

- Client credentials flow, to obtain tokens linked not linked to user identities, but to the service itself

• Ability to parse and validate ID tokens resulting from OpenID Connect authentication flows in
compliance with the OpenID connect spec

• Ability to honour audience restrictions
- the ability to identity itself with (one or multiple) audience labels and honour audience restrictions in ID

tokens

• (Optional) Ability to implement Level Of Assurance (LoA) policies

78

This is typically sorted out by
OAuth/OIDC libraries

INDIGO IAM
(in a bit more detail)

INDIGO Identity and Access Management Service
An authentication and authorization
service that

• supports multiple authentication
mechanisms

• provides users with a persistent, organization
scoped identifier

• exposes identity information, attributes and
capabilities to services via JWT tokens and
standard OAuth & OpenID Connect protocols

• can integrate existing VOMS-aware services

• supports Web and non-Web access, delegation
and token renewal

80

INDIGO Identity and Access Management Service
First developed in the context of the
H2020 INDIGO DataCloud project

Selected by the WLCG management
board to be the core of the future, token-
based WLCG AAI

Sustained by INFN for the foreseeable
future, with current support from:

81

IAM deployment model
An IAM instance is deployed for a community of users
sharing resources, the good old Virtual Organization
(VO) concept.

Client applications and services are integrated with this
instance via standard OAuth/OpenID Connect
mechanisms.

The IAM Web appearance can be customized to
include a community logo, AUP and privacy policy
document.

82

IAM deployment model
An IAM instance is deployed for a community of users
sharing resources, the good old Virtual Organization
(VO) concept.

Client applications and services are integrated with this
instance via standard OAuth/OpenID Connect
mechanisms.

The IAM Web appearance can be customized to
include a community logo, AUP and privacy policy
document.

82

IAM deployment model
An IAM instance is deployed for a community of users
sharing resources, the good old Virtual Organization
(VO) concept.

Client applications and services are integrated with this
instance via standard OAuth/OpenID Connect
mechanisms.

The IAM Web appearance can be customized to
include a community logo, AUP and privacy policy
document.

82

User enrolment & registration service
IAM currently supports two enrolment flows:

Admin-moderated flow

• The applicant fills basic registration information, accepts AUP, proves email ownership

• VO administrators are informed by email and can approve or reject incoming membership
requests

• The applicant is informed via email of the administrator decision

Automatic-enrolment flow

• Users authenticated at trusted, configurable IdPs are automatically on-boarded, without
requiring administrator approval

83

IAM moderated enrolment flow

84

Registration Email
Confirmation

Admin
Approval

Password
Setup

Send email
confirmation

notification to
applicant’s email

address

Send notification
to VO

administrators to
inform about new

pending
registration

request

Send notification
to applicant to

inform that
request has been

approved

IAM moderated enrolment flow

85

Registration Email
Confirmation

Admin
Approval

Password
Setup

Send email
confirmation

notification to
applicant’s email

address

Send notification
to VO

administrators to
inform about new

pending
registration

request

Send notification
to applicant to

inform that
request has been

approved

Optional step when users
registers after having been

authenticated using an
external IdP

Flexible authentication & account linking
Authentication supported via

• local username/password credentials (created at registration
time)

• SAML Home institution IdP (e.g., EduGAIN)

• OpenID Connect (Google, Microsoft, Paypal, ORCID)

• X.509 certificates

Users can link any of the supported authentication
credentials to their IAM account at registration time or later

To link an external credential/account, the user has to
prove that he/she owns such account

86

Management tools
IAM provides a mobile-friendly dashboard for:

• User management

• Group management

• Membership request management

• Account linking and personal details editing

• Token management

All management functionality is also exposed by REST APIs 

87

AUP enforcement support
AUP acceptance, if enabled, can be configured to
be:

• requested once at user registration time

• periodically, with configurable period

User cannot login to the system (and as such be
authenticated at authorized at services) unless the
AUP has been accepted

88

SCIM provisioning APIs
IAM provides a RESTful API, based on the System for Cross-domain Identity
Management (SCIM) standard, that can be used to access information in the IAM
database

• users, groups, group memberships, etc…

The API can be used as an integration point towards external systems

• Example:
- The SCIM API is used in the integration with the HTCondor batch system to do UNIX account pre-

provisioning based on IAM account information

89

http://www.simplecloud.info/
http://www.simplecloud.info/

On-demand X.5O9 certificate generation
IAM integrates with the RCAuth.eu online certificate authority so that users
without an X.509 certificate can easily request one and link it to their
membership, via the IAM dashboard

A long-lived X.509 proxy certificate is generated from the certificate obtained
from RCAuth and stored in the IAM database

An RESTful API provides access to the certificate to trusted clients

90

http://RCAuth.eu
http://RCAuth.eu

VOMS provisioning
IAM includes a VOMS attribute authority micro-service that
can encode IAM membership information in a standard
VOMS Attribute Certificate

Proven compatibility with existing clients and Grid services

91

membership
information

voms-proxy-init

IAM

VOMS AA

Easy integration with relying services
Standard OAuth/OpenID Connect enables easy integration with off-the-shelf
services and libraries.

IAM has been successfully integrated with

• Openstack, Atlassian JIRA & Confluence, Moodle, Rocketchat, Grafana, Kubernetes,
JupyterHub, dCache, StoRM, XRootD (HTTP), FTS, RUCIO, HTCondor

92

IAM documentation reference
https://indigo-iam.github.io/docs/

Provides information for:

• IAM service manager

• IAM VO administrators

• IAM users

93

https://indigo-iam.github.io/docs/
https://indigo-iam.github.io/docs/

IAM demo

Thanks for your attention.
Questions?

Backup slides

Token-based flows for WLCG
data management

Scope-based AuthZ scenario

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

99

SE 1

SE 2IAM

In this scenario,
RUCIO delegates its identity to

FTS to manage a third-party data
transfer between SE 1 and SE 2

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

100

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

RUCIO gets a token from IAM
using the OAuth

client_credentials grant type.
The token needs to provide the

minimum privileges need to
interact with FTS

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

101

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token
request

POST /token HTTP/2
Host: iam.example
Authorization: Basic ZG...B
Accept: */*
Content-Length: ...
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials
&scope=fts:submit-transfer
&audience=https://fts.example

https://fts.example
https://fts.example

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

101

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token
request

POST /token HTTP/2
Host: iam.example
Authorization: Basic ZG...B
Accept: */*
Content-Length: ...
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials
&scope=fts:submit-transfer
&audience=https://fts.examplerequested scopes & audience

https://fts.example
https://fts.example

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

102

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token
response {

 "access_token": “eyJra…HvBfTpM”,
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": “fts:submit-job”
}

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

102

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token
response {

 "access_token": “eyJra…HvBfTpM”,
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": “fts:submit-job”
}

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

103

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Rucio extracts the access token
from the response, and stores

it in local memory.
{
 "sub": "rucio.example",
 "aud": “https://fts.example”,
 "nbf": 1572840340,
 "scope": "fts:submit-transfer",
 "iss": "https://iam.example/",
 "exp": 1572843940,
 "iat": 1572840340,
 "jti": "be48f2ab-8dd9-4df2-ae0b-bcb1fdfafaa6"
}

{
 "access_token": “eyJra…HvBfTpM”,
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": “fts:submit-job”
}

parse
&

validate
JWT

access token body:

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

104

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

{
 "sub": "rucio.example",
 "aud": “https://fts.example”,
 "nbf": 1572840340,
 "scope": "fts:submit-transfer",
 "iss": "https://iam.example/",
 "exp": 1572843940,
 "iat": 1572840340,
 "jti": "be48f2ab-8dd9-4df2-ae0b-bcb1fdfafaa6"
}

access token body:The token audience is limited to
FTS, and the requested scope

has been granted.

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

105

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

RUCIO submits a transfer job
to FTS, including the token
obtained from IAM in the

request Submit
transfer

job

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

106

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Submit
transfer

job

FTS validates the token extracted
from the request and accepts the

transfer, assuming the token is
valid and provides the necessary

rights

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

107

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

FTS now needs a token that will be
used for AuthN/Z at the storage
elements. In this scenario, FTS

impersonates RUCIO.

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

108

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

The token it already has cannot be
used for the transfer:

it’s scoped to https://fts.example
and does not provide the necessary

rights to read and store files
at storage elements

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

109

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

FTS then exchanges the obtained
token with a couple of tokens, an

access token and refresh token, that
will be used to manage the transfer

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

110

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

POST /token HTTP/2
Host: iam.example
Authorization: Basic u89…
Accept: */*
Content-Length: ...
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:token-exchange
&subject_token=eyJra…HvBfTpM
&audience=se1.example%20se2.example
&scope=storage.read%3A%2F%20storage.create%3A%2F%20offline_access

FTS requests the following
scopes:

storage.read:/
storage.create:/
offline_access

Token
exchange
request

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

111

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

POST /token HTTP/2
Host: iam.example
Authorization: Basic u89…
Accept: */*
Content-Length: ...
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:token-exchange
&subject_token=eyJra…HvBfTpM
&audience=https%3A%2F%2Fse1.example%20https%3A%2F%2Fse2%2Fexample
&scope=storage.read%3A%2F%20storage.create%3A%2F%20offline_access

The audience of the token
is limited to only apply to the
storage elements involved in

the transfer

Token
exchange
request

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

112

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

IAM validates the token
exchange request, and

assuming there’s a policy that
authorizes the exchange,

issues the requested tokens

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

113

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

Token
exchange
response

{
 "access_token": “e7nd…HvBfTpM”,
 “refresh_token": “9njuk…”,
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": “storage.read:/ storage.create:/ offline_access”
}

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

114

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

{
 "access_token": “e7nd…HvBfTpM”,
 “refresh_token": “9njuk…”,
 "token_type": "Bearer",
 "expires_in": 3599,
 "scope": “storage.read:/
 storage.create:/
 offline_access”
}

FTS extracts the tokens
from the response

and saves them locally

✪

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

115

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

{
 "sub": "rucio.example",
 "aud": [“https://se1.example”,
 ”https://se2.example”],
 "nbf": 1572840345,
 "scope": “storage.read:/ storage.create:/
 offline_access”,
 "iss": "https://iam.example/",
 "exp": 1572843945,
 "iat": 1572840345,
 "jti": “be48…”
}

The new access token can be
refreshed from IAM

with the refresh_token flow.

Refresh tokens are typically
much longer lived than

access tokens and

✪

access token body:

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

116

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

FTS will enqueue the transfer
job, and when the transfer is

about to start can use the
refresh token to get a fresh

access token that will be used
for the transfer.

✪

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

117

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

FTS then submits the third-
party transfer against SE 2,
including the token in the

request

✪

Submit
third-party transfer

COPY /example/file HTTP/2
Host: se2.example
Source: https://se1.example/example/file
Authorization: Bearer e7nd…
TransferHeaderAuthorization: Bearer e7nd…

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

118

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

The same token will be used
for authn/z at se1 and se2.

It's also possible to have two
separate tokens for each SE

✪

Submit
third-party transfer

COPY /example/file HTTP/2
Host: se2.example
Source: https://se1.example/example/file
Authorization: Bearer e7nd…
TransferHeaderAuthorization: Bearer e7nd…

Token-based AuthN/Z for DOMA xfers: RUCIO delegated identity

119

SE 1

SE 2IAM

rucio.example

fts.example

se1.example

se2.exampleiam.example

SE2 will then use the
obtained token for authn/z

against SE1

✪

Data
Transfer

GET /example/file HTTP/2
Host: se1.example
Authorization: Bearer e7nd…

Group-based AuthZ scenario

Group-based authZ scenario
See flow description from the last hackathon

• https://github.com/WLCG-AuthZ-WG/hackathon/blob/master/authorization-flows.md

121

https://github.com/WLCG-AuthZ-WG/hackathon/blob/master/authorization-flows.md
https://github.com/WLCG-AuthZ-WG/hackathon/blob/master/authorization-flows.md

