Photon Stoppers & Resistive Wall Some First Results

Nikolaos Nikolopoulos

 $\label{eq:C.E.R.N.} \begin{array}{l} {\rm C.E.R.N.} \\ {\rm E.P.-C.M.G. \ Organic \ Unit} \end{array}$

138th F.C.C.-ee Optics Design Meeting & 9th F.C.C.I.S. W.P.2.2 Meeting

Supervisor: Michael Koratzinos E.P. - C.M.G.

7 May 2021

Table of Contents

Introduction

- Aim of the Presentation
- Coupling Impedance & Loss Factor
- Loss Factor of Gaussian Bunch
- 2 C.S.T. Studio Simulations
 - C.D.R. Reminder
 - Assumptions
 - Simulation Results
 - First Consistency Check
 - Cylindrical Pipe Case
 - Elliptical Pipe Case
 - Cylindrical Pipe Variations Case
- Conclusion & Bibliography
 - Power Estimation
 - Comments
 - Sources

Aim of the Presentation Impedance & Loss Factor Gaussian Bunch Loss Factor

Purpose of this Study

- An idea was presented on the 132nd F.C.C.-ee Optics Design Meeting to nest the arc quads and sextupoles and make them superconducting.
- One of the questions raised is how much would this idea increase the **resistive wall impedance** budget (and, therefore, wasted power) of the machine.
- This idea accommodates much smaller winglets than the C.D.R. [2] design (i.e. $110 \text{mm} \rightarrow 86 \text{mm}$) for the length of the S.S.S. (i.e. 3.4m).
- It also calls for **photon stoppers** that possibly protrude more into the beam pipe than the C.D.R. [2] design.
- This is a preliminary study for a quick comparison between options and not a substitute for an in-depth analysis by the experts.

Aim of the Presentation Impedance & Loss Factor Gaussian Bunch Loss Factor

Coupling Impedance & Loss Factor

Theoretical Formulas

Longitudinal Impedance $[\Omega]$ & Transverse Dipole Impedance $[\frac{\Omega}{m}]$

$$Z_{\parallel}(\omega) := \frac{1}{c} \int_{-\infty}^{\infty} w_{\parallel}(z) e^{j \frac{\omega z}{c}} dz$$
 (1)

$$Z_{\perp}(\omega) := -\frac{i}{c} \int_{-\infty}^{\infty} w_{\perp}(z) e^{i\frac{\omega z}{c}} dz$$
 (2)

4/22

Loss Factor $\left[\frac{V}{C}\right]$ $k = -\frac{U(z=0)}{q^2} \xrightarrow{\text{B.L.T.}} k = \frac{w_{\parallel}(z \to 0)}{2}$

Impedance & Loss Factor Gaussian Bunch Loss Factor

Wake Potential & Energy Loss of Bunched Distribution

Theory

 $dU(z) = -ew_{\parallel}(z'-z)dq(z')$ $= -ew_{\parallel}(z'-z)\lambda(z')dz'$

Energy lost by e due to a thin slice (dz') of the distribution

 $U(z)=-e\int^{\infty}w_{\parallel}(z'-z)\lambda(z')dz'$ Energy lost by e due to the

whole distribution

 $q = \int_{-\infty}^{\infty} \lambda(z) dz$

Total distribution

charge

$$egin{aligned} \mathcal{W}_{\parallel}(z) &= -rac{U(z)}{qe} \ &= rac{1}{q}\int_{-\infty}^{\infty}w_{\parallel}(z'-z)\lambda(z')dz' \end{aligned}$$

Longitudinal wake potential

of a distribution

Source: [1]

Aim of the Presentation Impedance & Loss Factor Gaussian Bunch Loss Factor

Loss Factor of Gaussian Bunch

Analytical Formula for Circular Pipe

Loss Factor of Gaussian Bunch in Circular Copper Beam Pipe $\left[\frac{V}{C}\right]$

$$\frac{\Gamma(\frac{3}{4})c}{4\pi^2 r\sqrt{\sigma_z^3}}\sqrt{\frac{Z_0}{2\sigma_c}}$$

- $\Gamma(\frac{3}{4}) \approx 1.225$
- $c \approx 3 \times 10^8 \frac{m}{s}$
- $\sigma_c \approx 6 \times 10^7 \frac{s}{m}$
- *r* = Beam pipe radius
- $\sigma_z = \text{Gaussian bunch length}$
- $Z_0 =$ Impedance of free space $\approx 377 \ \Omega$

(3)

C.D.R. Reminder Assumptions Simulation Results

C.D.R. Recap

3D model of the F.C.C.-ee chamber and a S.R. absorber with pumping slots used for C.S.T. simulations. (source: [2])

Beam pipe radius (r) = 35mmWinglet total width (X) = 110mmWinglet height (Y) = 11mmPhoton stopper length $\approx 300mm$

- Photon incident angle is 2.55 mrad
- 1*m* of longitudinal S.R. spreads over 2.5*mm* transversely at the stopper
- Half cell length is 27.9m
- If we use 5 stoppers per half cell, the average distance between stoppers is 5.6 m and each stopper would need to be 14.3mm thick
- Stopper size and distance might vary in this new approach

C.D.R. Reminder Assumptions Simulation Results

A Priori Assumptions

Boundaries (electric)

Symmetry planes (magnetic)

C.D.R. Reminder Assumptions Simulation Results

Cylindrical Copper Pipe

- Many thanks to Mauro Migliorati for providing guidance with C.S.T. Studio.
- As a first consistency check we simulate the case of a round copper pipe and check the result against the theoretical value obtained by equation (3).
- For a 400mm long copper pipe of 35mm radius and 10mm thickness we are in good agreement with the analytical loss factor derived by (3), with approximately 4% relative error.

Values in $\left[\frac{V}{pC}\right]$						
Simulated	Theoretical					
1.3705e-04	1.4215e-04					

C.D.R. Reminder Assumptions Simulation Results

Cylindrical Pipe Comparative Table

Ріре Туре		Geometry	Material	Length	$\sigma_{\rm beam}$	Wakelength	Beam Direction	Loss Factor (k)	Analytical Loss Factor
					[mn]	+ or –	[[∨] _{pC}]	
Cylindrical Plain		r = 35mm	Cu					0.7463e-04	1.4215e-04
	$\delta = 100 \mu m$	Cu×e-04					0.9525e-02	1.4215e-02	
		-//- $\delta = 1mm$	Cu	400	12.1		÷	1.3681e-04	1.4215e-04
			Cu×e-04			2000		1.2990e-02	1.4215e-02
	Plain	-//- $\delta = 5mm$	Cu					1.3704e-04	1.4215e-04
			Cu×e-04					1.4379e-02	1.4215e-02
		-//- $\delta = 10mm$	Cu					1.3705e-04	1.4215e-04
			Cu×e-04					1.4379e-02	1.4215e-02

Nikos Nikolopoulos Photon Stoppers & Resistive Wall

10/22

C.D.R. Reminder Assumptions Simulation Results

Elliptical Pipe Comparative Table I

Vacuum Chamber Area Invariant

Ріре Туре		Geometry	Material	Length	$\sigma_{ m beam}$	Wakelength	Beam Direction	Loss Factor (k)
		Connectiy			[mn	1]	+ or -	$\left[\frac{V}{pC}\right]$
Elliptical	Plain	a = 41.41mm b = 29.58mm (Area Invariant) $\delta = 100\mu m$	Си		12.1	2000	+	0.8837e-04
		$\delta = 1mm$		400				1.5343e-04
		-//- $\delta = 5mm$						1.5418e-04
		$\delta = 10mm$						1.5418e-04

C.D.R. Reminder Assumptions Simulation Results

Cylindrical Pipe Variations Comparative Table I

Pine Type		Geometry	Material	Length	$\sigma_{ m beam}$	Wakelength	Beam Direction	Loss Factor (k)
		-			[mm	1]	+ or -	$\left[\frac{V}{pC}\right]$
Cylindrical	Short Winglets	$r = 35mm$ $X = 85mm$ $\delta = 2mm$		400		2000		1.4735e-04
	Long Winglets	$r = 35mm$ $X = 110mm$ $\delta = 2mm$			- 12.1		+	1.4849e-04
	Short Winglets & Cooling Pipe	$r = 35mm$ $X = 86mm$ $\delta = 2mm$	Cu			5000		3.6790e-04
	Long Winglets & Cooling Pipe	$r = 35mm$ $X = 110mm$ $\delta = 2mm$						3.6869e-04

C.D.R. Reminder Assumptions Simulation Results

Beam Pipe Transitions

A smooth transition between a 110mm winglet to a 86mm winglet was developed (credits to my supervisor for this design).

C.D.R. Reminder Assumptions Simulation Results

Cylindrical Pipe Variations Comparative Table II Transitional Beam Pipe

Ріре Туре		Geometry	Material	Length	$\sigma_{ m beam}$	Wakelength	Beam Direction	Loss Factor (k)
		Geometry		[mm]			+ or -	[<u>∨</u> _{pC}]
Cylindrical		$r = 35mm$ $X_{small} = 86mm$	<u>(</u> "	1000	12.1	5000	+	5.1243e-04
Cymuncar	۲ransitional	$X_{big} = 110mm$ $\delta = 2mm$	Cu	1000	12.1	5000	_	4.3988e-04

The difference between the +z and -z directions for the loss factor of the particle beam can be justified. According to [2] the impedance is mostly **resistive** when a particle exits into a beam pipe of greater radius.

C.D.R. Reminder Assumptions Simulation Results

Beam Pipe Geometry & Stopper Modifications

Modifications with respect to the C.D.R. stopper:

- Stopper is thicker.
- Stopper is longer.
- Cooling pipe addition.
- Stopper has photon incident slope of $\arctan(\frac{1}{30})$.
- Keeping the heat load less than 100W per cm.
- If this stopper receives 2.5 kW from 5m of S.R. power, then every cm receives a S.R. power of 83W in this specific example.

C.D.R. Reminder Assumptions Simulation Results

Variations of Stopper Geometries

 \mathbf{d} is the distance (in mm) from the particle beam

Effect on **impedance** of different **stopper** protrusions could be determined through simulations over the variable stopper geometries.

C.D.R. Reminder Assumptions Simulation Results

Cylindrical Pipe Variations Comparative Table III

Beam Pipe with Stopper Variations & Cooling Pipe

Ріре Туре		Geometry	Material	Length	$\sigma_{\rm beam}$	Wakelength	Beam Direction	Loss Factor (k)
					[mm	1	+ or -	[[¥] _p]
		r = 35mm X = 110mm $\delta = 2mm$ d = 42mm						4.7028e-04
Cylindrical		-//- d - 40mm	Cu	1000		5000	_	4.6898e-04
		-//- d = 38mm			12.1			4.6764e-04
	×	-//- d = 36mm						4.3686e-04
		-//- d = 34mm						4.9423e-04
		-//- d = 32mm						5.6078e-04
		-//- d = 30mm						8.4442e-04

Power Estimation Comments Sources

0

Formula for Power Consumption Estimation

One can transform the equation by which the loss factor k is defined, in order to acquire an equation for the power consumption per beam, i.e.

$$\underbrace{P}_{\text{power consumption}} = n_{\text{bunches}} \times \left(n_{\frac{\text{particles}}{\text{bunch}}} \times e \right)^2 \times \underbrace{k}_{\text{loss factor}} \times \underbrace{f}_{\text{revolution frequency}}$$

Power Estimation Comments Sources

Power Consumption Table

All Beam Pipe Types are 1m Long

	k	No. of Units	Total k	Total Power	С	Promium		
Ріре Туре	L ^	No. of Offics		Total Fower	k	Total Power		
	$\left[\frac{V}{pC}\right]$	[m]	$\left[\frac{V}{pC}\right]$	[MW]	$\left[\frac{V}{pC}\right]$	[MW]	/]	
Beam pipe with 110mm winglet & cooling	3.69e-04	83250	30.72	2.32	3.69e-04	2.32	0.00	
Beam pipe with (d = 32mm) stopper & cooling	5.61e-04	2900	1.63	0.12	4.70e-04 [†]	0.10	0.02	
Beam pipe with 110mm to 86mm transition & cooling	4.40e-04	2900	1.28	0.10	3.69e-04	0.08	0.02	
S.S.S. pipe with 86mm winglet & cooling	3.68e-04	5800	2.13	0.16	3.69e-04	0.16	0.00	
Beam pipe with 86mm to 110mm transition & cooling	5.12e-04	2900	1.48	0.11	3.69e-04	0.08	0.03	
Sum	-	97750	-	2.81	-	2.74	0.07	

Power Estimation Comments Sources

Comments & Observations

- This exercise is not for giving definitive answers and the results are preliminary.
- Questions being tackled:
 - How much does the stopper cost in terms of R.W. power?
 - How much does a transition from wide to narrow winglet cost?
- An estimation of the increased overall power consumption has shown that the cost in terms of power is reasonable for this new proposal.

Power Estimation Comments Sources

Bibliography I

- Belli, Eleonora and Migliorati, Mauro and Zobov, M.
 Impact of the Resistive Wall Impedance on Beam Dynamics in the FCCee.
 Physical Review Accelerators and Beams.
 10.1103/PhysRevAccelBeams.21.041001, 2018.
- Benedikt, Michael and Blondel, Alain et al.
 FCC-ee: The Lepton Collider: FCC CDR Volume 2.
 The European Physical Journal Special Topics.
 10.1140/epjst/e2019-900045-4, 2018.
- Alexander Wu Chao. Handbook of Accelerator Physics and Engineering. https://www.worldscientific.com/doi/pdf/10.1142/ 9789810248147_0003, 1999.

Power Estimatio Comments Sources

Bibliography II

Alexander Wu Chao.

Physics of Collective Beam Instabilities in High Energy Accelerators.

Wiley Series in Beam Physics and Accelerator Technology, 1993.

Palumbo, L., Vittorio G. Vaccaro, and M. Zobov. Wake Fields and Impedance. *arXiv preprint physics/0309023*, 2003.

