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Machine Learning 
in HEP



๏ The LHC challenge  

๏ A little bit of history of ML in HEP 

๏ The CERN ML-LHC community  

๏ Deep Learning at LHC by a few examples (biased selection) 

๏ Local reconstruction: clustering in calorimeters 

๏ Supervised Learning: jet tagging 

๏ Unsupervised searches: (re)discovering particles 

๏ Real time inference on FPGAs 

๏ Generative models: jet generation [Not Covered for lack of time]

Outline

2



The LHC and its big-data  
challenge



๏ Discover the Higgs boson or exclude 
its existence  

๏ Characterize the nature of EW 
symmetry breaking 

๏ Help answering the big questions 
left in particle physics 

๏ What stabilises physics at EW 
scale? 

๏ What’s the nature of Dark Matter? 

๏ Origin of cosmological matter/
antimatter asymmetry 

๏ Are there unexpected phenomena at 
the energy frontier

LHC:  Energy frontier exploration
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The LHC collisions
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๏ The LHC collides 
protons at 
unprecedented energy 
(equivalent to 13,000 
times their mass) 

๏ one collision every 
25 ns (= 40 Million 
collisions/sec) 

๏ Thousands of 
particles emerging 
from each collision 

๏ 1 MB of data 
recorded at each 
collision by big 
detectors



Big Data @LHC
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Big Data @LHC
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Data from WIRED 2013

๏ The amount of produced data 
is too much to be stored 

๏ 1,000 times the data 
generated by google 
searches+youtube+facebook 
back in 2013 

๏ Reduced to 5x(google 
searches+youtube+facebook) 
after first filtering 

๏ Can only store 5% of those

(*) Only two big experiments 
(ATLAS and CMS), only RAW data

https://www.wired.com/2013/04/bigdata/


Things will get worse
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‣~200 collisions/event 
‣~minute/event processing time 
‣(at best)Same computing resources 
as today

This is when the R&D has to happen

‣~40 collisions/event 
‣~10 sec/event processing time 
‣(at best)Same computing resources as 
today

Today

5 interactions/beam cross 140 interactions/beam cross



๏ To disentangle 200 
collisions happening at 
once, we will build new 
detectors with more 
(smaller) sensors 

๏ Event complexity grows non 
linearly 

๏ To profit of that, 
computing resources for 
data processing will have 
to increase 

๏ We are off by a factor ~10 
if we project to 2027

More sensors, more RECO troubles
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Deep Learning at Rescue: Reco
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DeepLearningforImagingCalorimetry

VitoriaBarinPacela,⇤Jean-RochVlimant,MaurizioPierini,andMariaSpiropulu
CaliforniaInstituteofTechnologyand

CMS

WeinvestigateparticlereconstructionusingDeepLearning,basedonadatasetconsistingofsingle-

particleenergyshowersinahighly-granularLinearColliderDetectorcalorimeterwitharegular3D

arrayofcells.Weperformenergyregressiononphotons,electrons,neutralandchargedpions,and

discusstheperformanceofourmodelineachparticledataset.

I.INTRODUCTION

OnethegreatestchallengesattheLHCat
CERNistocollectandanalysedatae�ciently.
Sophisticatedmachinelearningmethodshave
beenresearchedtotacklethisproblem,suchas
boosteddecisiontreesanddeeplearning.In
thisproject,weareusingdeepneuralnetworks
(DNN)[1][2]torecognizeimagesoriginatedby
thecollisionsintheLinearColliderDetector
(LCD)calorimeter[3][4],designedtooperate
attheCompactLinearCollider(CLIC).

Preliminarystudieshaveexploredthepossi-
bilityofreconstructingparticlesfromcalorimet-
ricdepositsusingimagerecognitiontechniques
basedonconvolutionalneuralnetworks,using
adatasetofsimulatedhitsofindividualpar-
ticlesontheLCDsurface.Thedatasetcon-
sistsofcalorimetricshowersproducedbysin-
gleparticles(pions,electronsorphotons)hit-
tingthesurfaceofanelectromagneticcalorime-
ter(ECAL)andeventuallyshoweringwithin
ahadroniccalorimeter(HCAL).Thisproject
aimedatreconstructingtheenergyofparticles
throughregression.

Thecodeusedfordefiningthemod-
elsandtrainingtheDNNsishostedat
https://github.com/vitoriapacela/NotebooksLCD,
andanalysistoolsarehostedat
https://github.com/vitoriapacela/RegressionLCD.

⇤vitoria.barinpacela@helsinki.fi

FIG.1.Visualizationofthedata.Chargedpion

eventdisplayedintheECALandHCAL.Everyhit

isshowninitsrespectivecellineachofthecalorime-

ters.Warmercolors(likeorangeandpink)repre-

senthigherenergies,as420GeV,whereascolder

colors,likeblue,representlowerenergies,as50

GeV.[5]

II.METHODS

Thedatasetsweresimulatedascloseaspos-
sibletorealcollisiondata,usingapreliminary
versionoftheCLICdetectordesign,imple-
mentedintheDDhepsoftwareframework[3].
Theyconsistof3Darraysrepresentingenergy
valuesinthecellsoftheECALandHCAL,and
thetrueenergyoftheparticle.TheECALdata
arrayshaveshape25x25x25,whereasthe
HCALdataarrayshaveshape4x4x60.Events
areofdiscrete,integer-valuedenergiesoverthe
range10-510GeV,andfixeddirection,sothat
theyimpactthecenterofthecalorimeterbar-
rel,withanimpactangleof90�.Thedatasets
foreachparticlearestoredintheHierarchical
DataFormat(HDF5)[6],whichisdesignedto
storeandorganizelargeamountsofdata.Each
HDF5filecontains10000events,andthereare

Which Particle?

Which Energy?

Which Direction?

๏ We know how to get from the data the answers we want 

๏ physics + intuition + computing 

๏ But the process is slow 

๏ We can use DL solutions as a shortcut: we teach neural networks 
how to give us the answer we want directly from the raw data



It started with NNs & Pattern Recognition
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๏ First papers 
proposing NNs 
applications in 
HEP date back to 
end of 80s 

๏ Pattern 
recognition 
(particle 
tracking) 

๏ Object 
identification 
(classification)



And it’s still about NNs & Pattern Recognition
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๏ Most of these 
applications are 
still the core 
of ML 
applications in 
HEP nowadays 

๏ but Deep 
Learning is 
broadening the 
use case list



๏ Sparse data: HEP data are sets of 
detector hits. Popular DL 
architectures (CNNs, RNNs) might 
work but with a cost (wasted 
memory) and could be improvable 

๏ Custom edge computing: inference 
will have to run on our resources, 
going from front-end chips to 
custom electronic boards, 
dedicated computer centres, to the 
GRID (i.e., full support of site-
dependent heterogenous computing) 

๏ Real-time: (with real data) 
inference has to happen within the 
time boundaries of the trigger (as 
fast as <1 μsec)

Dealing with HEP data
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7Rephrasing the problem

Perfect hashing function
g(mj) = bucket index (= tl/pi)

Same particle G same bucket

But: approximate similarity 
probably good enough
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ML in HEP before DL
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Centralised task (in online or offline reconstruction) 
Analysis-specific task (by users on local computing 
infrastructures)

๏ Classification:  

๏ identify a particle & reject fakes 

๏ identify signal events & reject background 

๏ Regression: 

๏ Measure energy of a particle 

๏ We typically use BDTs for these task 

๏ moved to Deep Learning for analysis-specific 
tasks 

๏ same will happen for centralised tasks 
(eventually)



Example: ML for Higgs discovery
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๏ We were not supposed to discover the Higgs boson as early as 2012 

๏ Given how the machine progressed, we expected discovery by end 2015 /mid 
2016 

๏ We made it earlier thanks (also) to Machine Learning 



๏ Possible  solution to the HL-LHC Big-data problem: Deep Learning to be 
faster and better in what we do today, freeing resources for new ideas 

๏ In this seminar, I will highlight a few examples of this 

๏ One BIG challenge: DL deployment needs to happen in between collisions 
and data analysis (trigger, reconstruction, …), where freeing resources 
will make a difference 

๏ Other issue: our data are not mainstream Deep Learning data. Work needed 
to adapt techniques 

Deep Learning and LHC Big Data
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The CERN ML community



CERN: a worldwide community
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๏ International community that 
goes beyond CERN research 
staff 

๏ We (CERN physicists) are a 
minority 

๏ Most physicists at CERN 
visit from other 
universities 

๏ Organized in independent 
scientific collaborations 
(the experiments: ATLAS, 
CMS, LHCb, ALICE, DUNE, …)

๏ O(1000) people in each 

๏ Across experiments, a growing community of researchers applying ML 
to many problems



๏ Within years, DL discussion in our community has been carried 
on in dedicated workshops 

๏ DS@LHC (then DS@HEP) from 2015 to 2017 

๏ ML4Jets (since 2017) 

๏ DarkMachines (with astro) 

๏ … 

๏ In special sessions at dedicated conferences 

๏ CHEP, ACAT, etc. 

๏ And in workshops @ML conferences 

๏ ML4PS workshop @NeurIPS 

๏ AI & Physics @AMLD 

๏ …

Conferences & Workshops
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https://indico.cern.ch/event/395374/
https://indico.fnal.gov/event/13497/
https://indico.cern.ch/event/980214/
https://www.darkmachines.org
https://indico.cern.ch/event/948465/
https://indico.cern.ch/event/855454/
https://ml4physicalsciences.github.io/2021/
https://appliedmldays.org/events/amld-epfl-2021/tracks/ai-physics


๏ The iML group is a cross-
experiment forum at CERN 

๏ representative from all 
LHC experiments + Theory 

๏ Monthly meetings on 
various subjects 

๏ Yearly workshop with 
invited talks from ML 
community

The iML group
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https://indico.cern.ch/event/852553/


๏ In recent years, data challenges 
served as opportunity to attract 
attention of ML community on our 
problems 

๏ Higgs Kaggle challenge 
(classification) 

๏ TrackML Kaggle challenge (pattern 
recognition) 

๏ Flavor Kaggle challenge 
(classification) 

๏ LHC Olympics (anomaly detection) 

๏ DarkMachines (anomaly detection) 

๏ 40 MHz Anomaly detection (anomaly 
detection)

Data Challenges
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https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/flavours-of-physics
https://bids.berkeley.edu/news/lhc-olympics-challenge-machine-learning-ushers-new-paradigm-particle-search
https://zenodo.org/record/3685861#.YT-wZC0RppQ
https://mpp-hep.github.io/ADC2021/


๏ This meeting is about CERN and ELLIS 

๏ For this reason, I focused on what CERN physicists in 
the experiments are working on 

๏ You should keep in mind that the ML effort for ML 
experiments goes beyond this 

๏ Many more groups all over the world developing ML-
based solutions for the LHC experiments, neutrinos, 
etc. 

๏ By joining ELLIS, CERN would act as a bridge 
between the ELLIS community and this large HEP-ML 
worldwide community

Disclaimer
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Local Reconstruction



๏ Most of HEP-related DL literature 
uses ConvNNs 

๏ In practice, little of that made 
it to production so far 

๏ Main issue (IMO): difficult to fit 
an irregular array of sensors 
(unordered set of dots in some 
feature space) in a regular array 
of pixels 

๏ Several solutions attempted 

๏ pixelate the data with a 
coarser binning 

๏ use recurrent networks 
(imposing some use-case-
specific ordering criterion) 

๏ use graph networks

Dealing with Real Life Detectors
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๏ Graphs can be very 
functional to process raw 
data 

๏ each detector hit 
represented as 
coordinates + energy 

๏ EdgeConv used as a 
baseline 

๏ Pros: no assumption on 
the underlying geometry 

๏ Cons: large memory 
consumption (large 
number of connections)

EdgeConv for Particle Physics

25

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet

Figure 1. Point cloud segmentation using the proposed neural network. Bottom: schematic neural network architecture. Top: Structure
of the feature spaces produced at different layers of the network, visualized as the distance from the red point to all the rest of the points
(shown left-to-right are the input and layers 1-3; rightmost figure shows the resulting segmentation). Observe how the feature space
structure in deeper layers captures semantically similar structures such as wings, fuselage, or turbines, despite a large distance between
them in the original input space.

spatial distribution. One common approach to process point
cloud data using deep learning models is to first convert raw
point cloud data into a volumetric representation, namely a
3D grid [30, 54]. This approach, however, usually intro-
duces quantization artifacts and excessive memory usage,
making it difficult to go to capture high-resolution or fine-
grained features.

State-of-the-art deep neural networks are designed
specifically to handle the irregularity of point clouds, di-
rectly manipulating raw point cloud data rather than pass-
ing to an intermediate regular representation. This approach
was pioneered by PointNet [34], which achieves permu-
tation invariance of points by operating on each point in-
dependently and subsequently applying a symmetric func-
tion to accumulate features. Various extensions of Point-
Net consider neighborhoods of points rather than acting on
each independently [36, 43]; these allow the network to
exploit local features, improving upon performance of the
basic model. These techniques largely treat points inde-
pendently at local scale to maintain permutation invariance.
This independence, however, neglects the geometric rela-
tionships among points, presenting a fundamental limitation
that leads to local features missing.

To address these drawbacks, we propose a novel simple
operation, called EdgeConv, which captures local geometric
structure while maintaining permutation invariance. Instead
of generating points’ features directly from their embed-
dings, EdgeConv generates edge features that describe the
relationships between a point and its neighbors. EdgeConv

is designed to be invariant to the ordering of neighbors, and
thus permutation invariant.

EdgeConv is easy to implement and integrate into exist-
ing deep learning models to improve their performance. In
our experiments, we integrate EdgeConv into the basic ver-
sion of PointNet without using any feature transformation.
We show performance improvement by a large margin; the
resulting network achieves state-of-the-art performance on
several datasets, most notably ModelNet40 and S3DIS for
classification and segmentation.

Key Contributions. We summarize the key contributions
of our work as follows:

• We present a novel operation for point clouds, Edge-
Conv, to better capture local geometric features of
point clouds while still maintaining permutation in-
variance.

• We show the model can learn to semantically group
points by dynamically updating the graph.

• We demonstrate that EdgeConv can be integrated into
multiple existing pipelines for point cloud processing.

• We present extensive analysis and testing of EdgeConv
and show that it achieves state-of-the-art performance
on benchmark datasets.
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Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.
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Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.
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Figure 1: Pictorial representation of the data flow across the G��N�� and the G���N�� layers.
(a) The input features FIN of each vi 2 V are processed by a dense neural network with two output
layers: a set of learned features FLR and a spatial information S in some learned representation
space. (b) In the case of the G���N�� layer, the S quantities are interpreted as the coordinates of
the vertices in some abstract space. The graph is built in this space, connecting each vi to its N
closest neighbors (N=4 in the figure), using the euclidean distance di j between the vertices to rank
the neighbors. (c) In the case of the G��N�� layer, the S quantities are interpreted as the distances
between the vertices and a set of S aggregators in some abstract space. The graph is then built
connecting each vi vertex to each aj aggregator, and the S quantities are the di j euclidean distances.
(d) Once the graph structure is established, the f ij features of the vj vertices connected to a given
vertex or aggregator vk are converted into the f̃ ijk quantities, through a potential (function of djk .
The corresponding information is then gathered across the graph and turned into a new feature f̃ ik of
vk (e.g. summing over the edges, or taking the maximum. (e) For each choice of gathering function,
a new set of features f̃ ik 2 F̃LR is generated. The F̃LR vector is concatenated to the initial FIN vector.
The resulting feature vector is given as input to a dense neural network with tanh activation, which
returns the output representation FOUT.
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Figure 1: Processing flow of the modified GarNet algorithm: (a) The input features (gj
v) of each vertex are

processed by a linear network, that returns a new set of features (f i
v) and its distance from the S aggregators

(dav). (b) A graph is built in the learned space, using the dav distances. (c) A message is gathered by each
aggregator, as a weighted sum across the vertices of f

i
v, with Wav = exp(≠d

2
av) as weights. (d) A message is

from each aggregator (f̃ i
av) is passed back to each vertex, with the same Wav weight. (e) The aggregated

outputs of each vertex are given as input to a neural network, which returns the learned representation.

with linear activation functions, so one can write them as linear transformations
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single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with approx. 50GeV energy showering in
di↵erent parts of the calorimeter. Colours indicate the
fraction belonging to each of the showers. The size of the
markers scales with the square root of the energy deposit
in each sensor.

Quantitatively, the performance of the models is com-
pared using the mean loss (µL) on the test data set, as well

as the clustering response as defined in Equations 2 and 3.
For every event, we define one of the shower as the test
shower and the other overlapping shower as noise shower.
Performance characteristics are evaluated only for the test
shower and are quantified by the mean (µR) and variance
(�R) of the response in the test data set. In addition, we
define clustering accuracy (A) as the fraction of show-
ers with response between 0.7 and 1.3. Given that some
showers are not properly clustered, the response distribu-
tion has a small fraction of outliers that disturb its other-
wise rather Gaussian shape. Therefore, test showers with
response less than 0.2 and higher than 2.8 are removed,
resulting in the response kernel mean µ⇤

R and variance �⇤
R.

The reconstruction of hits with significant overlaps is par-
ticularly challenging. Therefore, we also evaluate the per-
formance of the models restricted to those sensors with
energy fractions between 0.2 and 0.8.

As listed in Table 2, the GravNet layer outperforms
the other approaches as far as the inclusive metrics are
concerned, including even the more resource-intensiveDG-
CNN model. The GarNet model is slightly worse than
the DGCNN model but still outperforms the binning ap-
proach as far as the reconstruction of individual shower
hit fractions is concerned, represented by the loss func-
tion. However, with respect to the clustering response, the
binning model outperforms the GarNet and DGCNN
model slightly. For the overlapping parts of the show-
ers, the graph based approaches outperform the binning
approach. The DGCNN and GravNet model perform
equally well, and the GarNet model lies in-between the
binning approach and GravNet.

Table 2: Mean and variance of loss, response, and response
within the Gaussian kernel as well as clustering accuracy.

Inclusive
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867
DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881
GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872
GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlapping showers (20-80%)
µL �L µR �R µ⇤

R �⇤
R A

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697
DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728
GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714
GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

One should notice that part of the incorrectly pre-
dicted events are actually correctly clustered events in
which the test shower is labelled as noise shower (shower
swapping). Since the labelling is irrelevant in a clustering
problem, this behavior is not a real ine�ciency of the al-
gorithm. We denote by s the fraction of events where this
behaviour is observed. In Table 3, we calculate the loss for
both choices and evaluate the performance parameters for
the assignment that minimises the loss. The binning model
shows the largest fraction of swapped showers. The di↵er-
ence in response between the best-performing GravNet
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model using the G���N�� layers requires about 50% less. The G��N�� model provides the best
compromise of memory consumption with respect to performance. In terms of inference time, the
binning model is the fastest and the graph-based models show a similar behaviour for small batch
sizes on a GPU. The G��N�� and the G���N�� model benefit from parallelizing over a larger
batch. In particular, the G��N�� model is mostly sequential, which also explains the outstanding
performance on a single CPU core, with almost a factor of 10 shorter inference time compared to
the DGCNN model.
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Figure 5: Comparison of inference time for the network architectures described in the text, evaluated
on CPUs and GPUs with di�erent choices of batch size. The shaded area represents the +1�
statistical uncertainty band.

9 Conclusions

In this work, we introduced the G��N�� and G���N�� layers, which are distance-weighted graph
networks capable of learning irregular patterns of sparse data, such as the detector hits in a particle
physics detector with realistic geometry. Using as a benchmark problem the hit clustering in a
highly granular calorimeter, we show how these network architectures o�er a good compromise
between clustering performance and computational resource needs, when compared to CNN-based
and other graph-based networks. In the specific case considered here, the performance of the
G��N�� and G���N�� models are comparable to the CNN and graph baselines. On the other
hand, the simulated calorimeter in the benchmark study is only slightly irregular and can still be
represented by an almost regular array. In more realistic applications, e.g. with the hexagonal
sensors and the non-projective geometry of the future HGCAL detector of CMS, the di�erence
in performance between the graph-based approaches and the CNN-based approaches is expected
to increase further, making the G��N�� approach a very e�cient candidate for fast and accurate
inference and the G���N�� approach a good candidate for high-performance reconstruction with
less resource requirements and better performance than the DGCNN model.

– 12 –

๏ Good performance 
achieved, 
comparable to 
more traditional 
approaches  

๏ Using a potential 
(V(d) ) to weight 
up the near 
neighbours allows 
to keep memory 
footprint under 
control (with 
respect to other 
graph approaches)

S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries 7

(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4: Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full
shower (top) and for overlapping shower (bottom), computed summing the true deposited energy. Swapping of the
showers is allowed here.

model and the GarNet model is enhanced, while the dif-
ference between theGravNet andDGCNNmodel scales
similarly, likely because of their similar general structure.

As shown in Fig. 4, all models exhibit a bias toward
larger energy values for low-energy incoming particles.
Contributing to this bias are edge e↵ects from training the
models to predict fractions within the bounds of 0 and
1 with an adapted mean-squared error loss. This choice
is creating an expectation value larger than 0 at a peak
value of 0 (and vice-versa at a fraction of 1), and therefore
pushing the prediction away from predicting exactly 0 or
1, leading to an underestimation at high energies, and an
overestimation at low energies. Since we aim for a relative
comparison of the models, a study of other loss functions
is left for future study. In both metrics, mean and vari-
ance, the GravNet model outperforms the other models
in the full range, and the GarNet model shows the worst
performance, albeit in a comparable range. The resource-
intensive DGCNN model lies in between GravNet and
GarNet. For fractions between 0.2 and 0.8, the edge ef-

fects become negligible, and the Figures confirm that the
graph based models outperform the binning method at all
test shower energies, as well as that the GravNet and
the DGCNN model show similar performance.

8 Resource requirements

In addition to the clustering performance, it is impor-
tant to take into account the computational resources de-
manded by each model during inference. The inference
time can have a significant impact on the applicability of
the network for reconstruction tasks, in particular for the
kind of real-time processing performed by the trigger sys-
tems of typical collider experiments. We evaluate the in-
ference time t and memory consumption m for the models
studied here on one NVIDIA GTX 1080 Ti GPU for batch
sizes of 1 and 100, denoted as (t1,m1) and (t100, m100),
respectively. The inference time is also evaluated on one
Intel Xeon E5-2650 CPU core (tCPU

10
) for a fixed batch size
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Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.

– 2 –
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

๏ Data as images 

๏ can use computing 
vision techniques 

๏ Data as sequences 

๏ can use text 
processing techniques 

๏ Data as graphs of 
points 

๏ can use graph 
networks, as in 
social-media analyses

One problem, many solutions
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Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e



๏ Several architectures tried on problem 

๏ CNNs, physics motivated custom architectures, PointCloud, etc. 

๏ Best results achieved with graph architectures

Example: Top Taggers

33

https://arxiv.org/pdf/1902.09914.pdf

SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [31] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
LDA [54] 0.955 0.892 151±0.4 151.5±0.5 151.7±0.4 184k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

the event-level kinematics of the fat jets in the event sample has no visible impact on our
quoted performance metrics. We can then test how correlated the classifier output of the
di↵erent taggers are, leading to the pair-wise correlations for a subset of classifier outputs
shown in Fig. 6. The correlation matrix is given in Tab. 2. As expected from strong classifier
performances, most jets are clustered in the bottom left and top right corners, corresponding
to identification as background and signal, respectively. The largest spread is observed for
correlations with the EFP. Even the two strongest individual classifier outputs with relatively
little physics input — ResNeXt and ParticleNet — are not perfectly correlated.

Given this limited correlation, we investigate whether a meta-tagger might improve per-
formance. Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed
as a potential analysis tool, but rather as a benchmark of how much unused information is
still available in correlations. It is implemented as a fully connected network with 5 layers
containing 100-100-100-20-2 nodes. All activation functions are ReLu, apart from the final
layer’s SoftMax. Training is performed with the Adam [30] optimizer with an initial learning
rate of 0.001 and binary cross-entropy loss. We train for up to 50 epochs, but terminate if
there is no improvement in the validation loss for two consecutive epochs, so a typical training
ends after 5 epochs. The training data is provided by individual tagger output on the previous
test sample and split intro three subsets: GoaT-training (160k events), GoaT-testing (160k
events) and GoaT-validation (80k events). We repeat training/testing nine times, re-shu✏ing
the events randomly between the three subsets for each repetition. The standard deviation
of these nine repetitions is reported as uncertainty for GoaT taggers in Tab. 1. We show two
GoaT versions, one using a single output value per tagger as input (15 inputs), and one using

16
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Unsupervised searches



๏ Rather than specifying a signal hypothesis 
upfront, we could start looking at our data 

๏ Based on what we see (e.g., clustering alike 
objects) we could formulate a signal 
hypothesis 

๏ EXAMPLE: star classification was based on 
observed characteristics 

๏ Afterwords, it was realised that different 
classes correspond to different temperatures

Learning from Data

35



๏ Anomaly detection is one kind of data mining technique 

๏ One defines a metric of “typicality” to rank data samples 

๏ Based on this ranking, one can identify less typical events, tagging 
them as anomalies 

๏ By studying anomalies, one can make hypotheses on new physics mechanisms

Learning from Anomalies

36



DeepLearning from Anomalies

37

๏ Use semi/weakly/un supervised 
learning techniques to learn 
from data a metric  

๏ Use that metric to replace 
physics motivate features (or 
supervised ML scores) 

๏ Could be useful 

๏ Online, to select events 
that we should keep but we 
are not (human bias in 
defining what is 
interesting) 

๏ Offline, to enhance signals 
from unexpected signatures 



๏ Many “boxes” with 
X->YZ topology 

๏ A few given for 
strategy design 

๏ A few kept “black” 
and opened after 
submissions 
collected 

๏ Several methods 
designed, now 
being considered 
for real LHC 
analyses

LHC Olympics

38

Figure 51. Results of unblinding the first black box. Shown are the predicted resonance mass
(top left), the number of signal events (top right), the mass of the first daughter particle (bottom
left), and the mass of the second daughter particle (bottom right). Horizontal bars indicate the
uncertainty (only if provided by the submitting groups). In a smaller panel the pull (answer-
true)/uncertainty is given. Descriptions of the tested models are provided in the text.

signal, these results highlight a possible vulnerability of anomaly detection methods in the

tail of statistical distributions.

For Black Box 3 a resonance decaying to hadrons and invisible particles (PCA), a

resonance with a mass between 5.4 and 6.4 TeV (LDA), at 3.1 TeV (embedding clustering),

and between 5 and 5.5 TeV (QUAK) was reported. No signal was observed by one approach

(VRNN). The true injected resonance with a mass of 4.2 TeV and two competing decay

modes was not detected by any approach.

After unveiling the black boxes, further submissions and improvements to the anomaly

detectors were made. The VRNN and BuHuLaSpa (Sec. 3.3) approaches now report an

enhancement at an invariant mass below 4 TeV for black box 1, while no signal is observed

for the other two black boxes. With deep ensemble anomaly detection (Sec. 5.1) a resonance

at 3.5 TeV is seen for the first black box and for Latent Dirichlet Allocation a resonance

not incompatible with 3.8 TeV is observed. Another new submission was Particle Graph

Autoencoders (Sec 3.7) which detected a resonance at 3.9 TeV for the first black box.

Finally, a resonance at 3.5 TeV was seen using CWoLa hunting (Sec. 4.1). For Black Box

two and three, no additional observations of a signal were reported after unblinding.

6.2 Overall Lessons Learned

This large and diverse number of submissions on the blinded and unblinded datasets is very

encouraging. Even better, the resonance in the first black box was successfully detected

– 89 –



๏ Similar scope, different setup 

๏ no specific event topology 

๏ generic event representation 
(list of reconstructed particles) 

๏ Use unsupervised algorithms to 
define anomaly score 

๏ mainly autoencoders, with various 
architecture and training setup 

๏ High performance on benchmark 
examples, not always generalising 
to black boxes (optimization is 
an issue)

DarkMachine Challenge

39

Figure 11: Box plots for each of the physics signals in the hackathon dataset. These sum-
marize the span of results for the many anomaly detection models trained on background
only samples. Channel 2a has the tightest pre-selection cuts, and therefore less data, which
leads to the signals looking less anomalous.

given new physics signal with the color of the data representing which channel the search
is being performed in.

The most important take-away is that some signals are much more difficult for the
anomaly detectors than others. For instance, in the chargino-neutralino models with small
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DL as an electronic circuit



Javier Duarte I hls4ml

compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision 


reuse/pipeline

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware 
design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

!13

Design Exploration๏ Tool to deploy NNs to FPGA 

๏ reads as input models 
trained on standard 
DeepLearning libraries 

๏ comes with implementation 
of common ingredients 
(layers, activation 
functions, etc) 

๏ Uses HLS libraries to 
deliver a firmware 
implementation of a given 
network on FPGA 

๏ Could also be used to 
design AI-specific ASICs 
for future experiments 

HLS4ML
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EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

Example: jet tagging
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Jet substructure features

 21

Jet substructure observables provide large discrimination 
power between these types of jets


mass, multipliticity, energy correlation functions, … 
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

    M. Cacciari et al, Eur. Phys. J.C72(2012)1896 

These are expert-level features

Not necessarily realistic for L1 trigger 
“Raw” particle candidates more suitable (to be studied next) 
But lessons here are generic 

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for 
b-tagging information
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Jet substructure features
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Jet substructure observables provide large discrimination 
power between these types of jets
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(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

    M. Cacciari et al, Eur. Phys. J.C72(2012)1896 

These are expert-level features

Not necessarily realistic for L1 trigger 
“Raw” particle candidates more suitable (to be studied next) 
But lessons here are generic 

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for 
b-tagging information

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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The full model

43
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ML in FPGAs?
FPGA

How many resources? DSPs, LUTs, FFs? 
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64



Model Compression: reuse
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Efficient NN design: parallelization
• Trade-off between latency and FPGA resource usage determined by the parallelization of 

the calculations in each layer 

• Configure the “reuse factor” = number of times a multiplier is used to do a computation

 31

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/ 
Less throughput



๏ Remove parameters that don’t 
really contribute to 
performances 

๏ For DNN, can remove up to 
70% of a network with little 
impact on performance 

๏ Resources saving exploited 
easily at HLS conversion 

๏ More complicated with other 
architectures (requires 
dedicated pruning 
strategies)

Model Compression: pruning
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Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss



๏ Quantization: reduce the number of 
bits used to represent numbers (i.e., 
reduce used memory) 

๏ models are usually trained at 64 or 
32 bits 

๏ this is not necessarily needed in 
real life 

๏ one can go down to 16 bits w/o 
performance loss 

๏ one can do more quantising the model 
WHILE training 

๏ One could go as down as binary/
ternary precision with further 
computational advantage

Model Compression: quantization
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Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating 

point 

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.
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Table 1: Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used
as benchmark models in this study: AUC and per-class accuracy.

Class MNIST Class Jet tagging
AUC Accuracy [%] AUC Accuracy [%]

0 0.9997 99.7
g 0.939 891 0.9995 99.8

2 0.9991 99.6 q 0.904 853 0.9993 99.6
4 0.9996 99.6 W 0.946 915 0.9994 99.6
6 0.9992 99.6 Z 0.939 927 0.9996 99.6
8 0.9994 99.4 t 0.958 939 0.9991 99.5

Figure 3: Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh
(top-right), ReLU (bottom-left) and clipped ReLU (bottom-right).

3 Implementing binary and ternary networks in hls4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized when
its parameters (operations) are represented (performed) with reduced numerical precision. This precision could be
the same across the full network or specific to each component (e.g., for di�erent layers). Quantization reduces the
computing resources of model inference and its level can be tuned to yield little or no loss in model performance. In the
case of binary (ternary) networks, each weight assumes a value of +1 or �1 (+1, 0, or �1). Two- and three-valued
activation functions are used after each layer, acting as discrete versions of the tanh function. As alternatives, we also
investigate a standard ReLU function as well as its clipped version [27], defined as min(ReLU(x), ymax), with ymax being
a positive hyperparameter. In our study, we fix ymax = 1. The four functions are shown in Fig. 3.
In order to convert the models described in Sections 2, we rely on the MLP-related functionalities o�ered by the hls4ml
library, discussed at length in Ref. [2]. In addition to that, we exploit a set of custom implementations [18], specific to
binary and ternary networks, that allow one to speed up the execution of the building-block architecture shown in Fig. 4.
The implementation of these solutions is integrated in recent versions of the hls4ml library, starting with the v0.1.6
tag of the GitHub repository [28]. With respect to the work presented in Ref. [2], this version provides a special support
for large dense layers containing hundreds of nodes as in the models we consider in this study. This functionality will be
described in more detail in a future publication.
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Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –
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Figure 9: Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows themet-
rics for the benchmarkmodels: "Baseline" (B), "Baseline Pruned" (BP), "Baseline Heterogeneous" (BH), "QKeras Optimized" (O).
The relative accuracy is evaluated with respect to the �oating-point baseline model. Resources are expressed as a percentage
of the Xilinx VU9P FPGA targeted.

Table 3: Model accuracy, latency and resource utilization for six di�erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]
Baseline 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)
Baseline pruned 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)
Baseline heterogeneous 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)
QKeras 6-bit 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)
QKeras Optimized 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

at lowest resource cost. This model is referred to as the ‘baseline
heterogeneous (BH)’ model.

We then train several models using quantization-aware training
with QKeras based on the baseline model architecture. The �rst,
referred to as "QKeras optimized (QO)", is heterogeneously quan-
tized to a per-layer precision maximizing model accuracy while
minimizing area. It uses a reduced number of neurons per layer: 32,
16 and 16 instead of the original 64, 32 and 32. Additionally, three
layers of full-precision batch normalization is added.

A summary of the per-layer quantizations for the baseline (and
baseline pruned) and optimized model is given in Table 2. Finally,
we train a range of homogeneously quantized QKeras models in
order to quantify the impact of a given bit width on resources and
accuracy.

3.5 Performance
Each model is trained using QKeras version 0.7.4, translated into
�rmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and �ip-�ops (FF).

The BRAM is only used as a LUT read-only memory for calculating
the �nal Softmax function and is the same for all models, namely
1.5 units corresponding to a total of 54 Kb. The estimated resource
consumption and latency from logic-synthesis, together with the
model accuracy, are listed in Table 3. A fully parallel implemen-
tation is used, with an "initiation interval" of 1 clock cycle in all
cases. Resource utilization is quoted in percentage of total available
resources, with absolute numbers quoted in parenthesis.

The most resource e�cient model is the QKeras optimized (QO)
model, reducing the DSP usage by ⇠ 98%, LUT usage by ⇠ 80%,
and the FFs by ⇠ 90%. The drop in accuracy is less than 3% despite
using half the number of neurons per layer and an overall lower
precision. The extreme reduction of DSP utilization is especially
interesting as, on the FPGA, DSPs are scarce and usually become
the critical resource for ML applications. DSPs are used for all
multiply-add operations, however, if the precision of the incoming
numbers are much lower than the DSP precision (which, in this
case, is 18 bits) multiply-add operations are moved to LUTs. This
is an advantage, as a representative FPGA for the LHC trigger
system has O(1000) DSPs compared to O(1) million LUTs. If the
bulk of multiplication operations is moved to LUTs, this allows for
deeper and more complex models to be implemented. In our case,
the critical resource reduces from 56% of DSPs for the baseline to
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at lowest resource cost. This model is referred to as the ‘baseline
heterogeneous (BH)’ model.

We then train several models using quantization-aware training
with QKeras based on the baseline model architecture. The �rst,
referred to as "QKeras optimized (QO)", is heterogeneously quan-
tized to a per-layer precision maximizing model accuracy while
minimizing area. It uses a reduced number of neurons per layer: 32,
16 and 16 instead of the original 64, 32 and 32. Additionally, three
layers of full-precision batch normalization is added.

A summary of the per-layer quantizations for the baseline (and
baseline pruned) and optimized model is given in Table 2. Finally,
we train a range of homogeneously quantized QKeras models in
order to quantify the impact of a given bit width on resources and
accuracy.

3.5 Performance
Each model is trained using QKeras version 0.7.4, translated into
�rmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and �ip-�ops (FF).

The BRAM is only used as a LUT read-only memory for calculating
the �nal Softmax function and is the same for all models, namely
1.5 units corresponding to a total of 54 Kb. The estimated resource
consumption and latency from logic-synthesis, together with the
model accuracy, are listed in Table 3. A fully parallel implemen-
tation is used, with an "initiation interval" of 1 clock cycle in all
cases. Resource utilization is quoted in percentage of total available
resources, with absolute numbers quoted in parenthesis.

The most resource e�cient model is the QKeras optimized (QO)
model, reducing the DSP usage by ⇠ 98%, LUT usage by ⇠ 80%,
and the FFs by ⇠ 90%. The drop in accuracy is less than 3% despite
using half the number of neurons per layer and an overall lower
precision. The extreme reduction of DSP utilization is especially
interesting as, on the FPGA, DSPs are scarce and usually become
the critical resource for ML applications. DSPs are used for all
multiply-add operations, however, if the precision of the incoming
numbers are much lower than the DSP precision (which, in this
case, is 18 bits) multiply-add operations are moved to LUTs. This
is an advantage, as a representative FPGA for the LHC trigger
system has O(1000) DSPs compared to O(1) million LUTs. If the
bulk of multiplication operations is moved to LUTs, this allows for
deeper and more complex models to be implemented. In our case,
the critical resource reduces from 56% of DSPs for the baseline to
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Table 1: Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used
as benchmark models in this study: AUC and per-class accuracy.

Class MNIST Class Jet tagging
AUC Accuracy [%] AUC Accuracy [%]

0 0.9997 99.7
g 0.939 891 0.9995 99.8

2 0.9991 99.6 q 0.904 853 0.9993 99.6
4 0.9996 99.6 W 0.946 915 0.9994 99.6
6 0.9992 99.6 Z 0.939 927 0.9996 99.6
8 0.9994 99.4 t 0.958 939 0.9991 99.5

Figure 3: Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh
(top-right), ReLU (bottom-left) and clipped ReLU (bottom-right).

3 Implementing binary and ternary networks in hls4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized when
its parameters (operations) are represented (performed) with reduced numerical precision. This precision could be
the same across the full network or specific to each component (e.g., for di�erent layers). Quantization reduces the
computing resources of model inference and its level can be tuned to yield little or no loss in model performance. In the
case of binary (ternary) networks, each weight assumes a value of +1 or �1 (+1, 0, or �1). Two- and three-valued
activation functions are used after each layer, acting as discrete versions of the tanh function. As alternatives, we also
investigate a standard ReLU function as well as its clipped version [27], defined as min(ReLU(x), ymax), with ymax being
a positive hyperparameter. In our study, we fix ymax = 1. The four functions are shown in Fig. 3.
In order to convert the models described in Sections 2, we rely on the MLP-related functionalities o�ered by the hls4ml
library, discussed at length in Ref. [2]. In addition to that, we exploit a set of custom implementations [18], specific to
binary and ternary networks, that allow one to speed up the execution of the building-block architecture shown in Fig. 4.
The implementation of these solutions is integrated in recent versions of the hls4ml library, starting with the v0.1.6
tag of the GitHub repository [28]. With respect to the work presented in Ref. [2], this version provides a special support
for large dense layers containing hundreds of nodes as in the models we consider in this study. This functionality will be
described in more detail in a future publication.
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Binary networks use 1-bit representations for both weights and activations. In this case, the product between two
quantities can be optimized as an extremely lightweight operation. By encoding an arithmetical value of ‘�1’ as ‘0’, the
product can be expressed as an XNOR operation. As described in Table 2, an XNOR filter returns 0 when the two input
values are di�erent and 1 otherwise. For models using ternary weights or greater than 1 bit for activations, the much
larger FPGA logic is always used rather than digital signal processing (arithmetic) blocks (DSPs), whose number is
typically limited.

Table 2: Left: All possible products between A and B with values constrained to ±1. Right: The corresponding
truth-table when the quantities A and B are each encoded with 1 bit, and the XNOR operation is used for the product.

A B A ⇥ B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A � B
0 0 1
0 1 0
1 0 0
1 1 1

The binary and ternary tanh activation functions are implemented by testing the sign (in the case of binary tanh) or sign
and magnitude (for ternary tanh) of the input and yielding the corresponding value ±1 or 0 as seen in Fig. 3. A binary or
ternary tanh activation layer preceded by a batch normalization (BN) layer [29] can be further optimized. The BN layer
shifts the output of the dense layers to the range of values in which the activation function is nonlinear, enhancing the
network’s capability of modeling nonlinear responses. The usual BN transformation y for an input x is

y =
x � µ

p
�2 + ✏

� + �, (3)

given the mean µ, variance �2, scale �, and shift � learned during the network training. For a BN followed by a binary
tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the scaling of x using
FPGA DSPs, the four BN parameters are used to compute the value of x at which y flips sign. This calculation is
performed at compilation time, when the model is converted to HLS firmware using hls4ml. Similarly, the two values
of x around which the output of the ternary tanh activation changes are also calculated at compilation time. In the
FPGA, each node output is then simply compared against these precomputed thresholds, outputting the corresponding
±1, or 0. An additional optimization step sets the type of x in the HLS implementation to integer with a bit width
corresponding to the largest integer expected for each binary/ternary layer, found at compilation time. This procedure
further saves FPGA resources.
The binary and ternary layers considered for this work are fully integrated and compatible with the hls4ml package.
While not explored here, the package also supports models mixing binary/ternary layers with higher precision layers for
fully customized networks.

4 Binarization and ternarization strategies

Given a full-precision model, one could follow di�erent strategies to turn it into a binary or ternary model. One could
just replace each full-precision component by the corresponding binary/ternary element, in order to minimize resource
utilization. This might result in a loss of accuracy. As an alternative, one could train a binary/ternary model with
arbitrarily large architecture, in order to match the accuracy obtained at full precision, at a cost of a larger latency and
resource consumption. The ultimate strategy to follow depends on the use case. In this work, we present a few options,
covering these two extremes and intermediate solutions.
In this work, we focus on binary/ternary MLPs. The basic structure for the adopted architectures is shown in Fig. 4.
Each model consists of a sequence of blocks, each composed of a dense, BN, and activation layer. For binary and
ternary tanh, a BN+activation layer sequence can be implemented at small resource cost (see Section 3), which makes
this choice particularly convenient for fast inference on edge devices.
The binarization/ternarization of a given model can be done in di�erent ways, e.g., preserving the model architectures or
its performance. As a consequence, for each benchmark problem we consider seven models:

• Baseline: the three-layer MLP described in Section 2.
• Binarized (BNN): a binary version of the baseline model, built preserving the model architecture (number

of layers and nodes) while applying the following changes: use a binary representation (±1) for the weights;
replace the inner-layer ReLU activation functions with a binary tanh (see Fig. 3); introduce BN layers in

6

Figure 7: Comparison of the resource utilization estimated by the HLS compiler and obtained by the logic synthesis
versus the maximum latency achieved by the design for the BNN and baseline MNIST-classification models. The TNN
model gives similar resource utilization as the BNN and is omitted.

As a final test, we train a larger BNN model consisting of three dense layers with 256 nodes each, as in the study
of Ref. [18], allowing for a direct comparison of our implementation of a binary architecture with what presented
there. The hls4ml implementation of this model yields a total accuracy of 95% for both floating-point and fixed-point
precision, where the latter is fixed to h16, 6i. With an II of 28, we obtain a maximum latency of 0.31 µs with a resource
utilization comparable to that in Ref. [18]. In particular, the deployed model obtained with hls4ml after the logic
synthesis utilizes 0% DSPs, 7% FFs, 23% LUTs, and 16% BRAMs on a Xilinx Virtex Ultrascale 9+ FPGA card.

5.2 LHC jet identification

As a second benchmark example, we consider the LHC jet-tagging problem introduced in Section 2 and study all the
binarization/ternarization strategies described in Section 4. For all models a fixed-point precision of h16, 6i is su�cient
to reproduce the FPP accuracy after quantization. The AUCs and accuracy before and after quantization are reported in
Table 5 for all models, while a comparison of the resource utilization is found in Table 6.
Unlike what is seen for the MNIST digit classification, the simple binarization/ternarization of the baseline model
results in a big accuracy loss. This is partially mitigated by the use of ReLU and clipped ReLU activations. As an
alternative approach, we also consider optimized binary and ternary architectures (best models in Table 5), fixed through
a Bayesian optimization of the network hyperparameters. The result of the Bayesian hyperparameter optimization for
BNN and TNN converges to architectures with about 40 and 4 times more parameters with respect to the baseline
architecture, respectively. With these larger architectures, binary and ternary methods almost match, with a moderate
loss in accuracy. Optimizing the architecture of the binary and ternary models yields comparable precisions, but with a
di�erent resource balance (e.g., DSPs vs. LUTs), o�ering an alternative that might better fit certain use cases.
The results of Tables 5 and 6 confirm that ternary networks generally o�er a better resource vs. accuracy balance than
binary networks, with a minimal (often negligible) additional resource cost and a comparable (sometimes smaller)

11

https://arxiv.org/abs/2003.06308

https://arxiv.org/abs/2003.06308


Fast CNN inference on FPGAs

1

Softmax

Output: 
Dense output (n=10) 
Softmax 

Block 4: 
Dense 0 (n=42) 
Batch Norm. 
ReLU 

Flatten (96) Block 3: 
Conv 2 (f=24, k=3) 
Max Pooling (2,2) 
Batch Norm. 
ReLU

Block 2: 
Conv 1 (f=16, k=3) 
Max Pooling (2,2) 
Batch Norm. 
ReLU

Block 1: 
Conv 0 (f=16, k=3) 
Max Pooling (2,2) 
Batch Norm. 
ReLU

Input: 
32x32x3 

ReLU

Block 5: 
Dense 1 (n=64) 
Batch Norm. 
ReLU 

ReLU ReLU ReLU ReLU

Figure 4: The neural network architecture, chosen through a Bayesian optimization over the hyperparameters, for
classifying digits from the SVHN dataset. Each convolutional block consists of a convolutional layer, max pooling,
batch normalization, and ReLU activation. The convolutional layers in the three convolutional blocks use 16, 16, and
24 filters, respectively, and each has a kernel size of 3⇥ 3. The pooling layers have a size of 2⇥ 2. The convolutional
blocks are followed by two fully-connected layers consisting of 42 and 64 neurons, with batch normalization and ReLU
activation. The bias term is removed from all layers except the final output layer.

Table 1: Number of trainable weights, floating-point operations, energy consumption and layer size in bits for each
convolutional or dense layer (not including the activation layers). Batch normalization and pooling layers are not
included as they are negligible in size and energy consumption in comparison. The energy is estimated assuming a 45
nm process using QTOOLS. The total energy and bit size includes all model layers.

Layer name Layer type Input shape Weights MFLOPs Energy [nJ] Bit size
Conv 0 Conv2D (32, 32, 3) 432 0.778 1,795 3,456
Conv 1 Conv2D (15, 15, 16) 2,304 0.779 1,802 18,432
Conv 2 Conv2D (6, 6, 16) 3,456 0.110 262 27,648
Dense 0 Dense (96) 4,032 0.008 26 32,256
Dense 1 Dense (42) 2,688 0.005 17 21,504
Output Dense (64) 65 0.001 4 5,200
Model total 12,858 1.71 3,918 170,816

In our case, this balance is found through a Bayesian optimization over the model hyperparameters using KERAS
TUNER [48]. The first few layers are chosen to be 2D convolutional blocks. Each block consists of a convolutional
layer followed by a max pooling layer, a batch normalization [49] layer, and a rectified linear unit (ReLU) [50, 51]
activation function. Pooling the convolutional layer output before applying the activation function reduces the necessary
operations, but does not impact the model accuracy because monotonic activation functions like ReLU commute
with max pooling (but not average pooling) [52]. Besides speeding up the model training, this choice allows us to
reduce the number of multiplications in a convolutional block at no accuracy cost. As done in other models (e.g.
ResNet [53]), performing the batch normalization before the activation function allows us to maximally exploit the
non-linear properties of the activation function, shifting its input to the region near the function’s non-linearity.

The number of filters and their sizes, together with the type and size of the pooling layers, are free hyperparameters in
the optimization. In our case, we set the optimization range so that the maximum number of loop iterations per layer is
below the unroll limit described in Section 3 in order to achieve the lowest possible latency. Pooling layers are used to
keep the size of the final dense layers small.

The convolutional blocks are followed by a series of fully-connected layers, the amount of layers and their size again
determined through the hyperparameter optimization. A final ten-node dense layer, activated by a softmax function,
returns the probability for a given image to be assigned to each of the ten classes. The result of the Bayesian optimization,
shown in Fig. 4, consists of three convolutional blocks and two dense layers. The convolutional layers in the three
blocks have 16, 16, and 24 filters, respectively, and each has a kernel size of 3 ⇥ 3. The pooling layers have a size
of 2⇥ 2. The two hidden dense layers consist of 42 and 64 neurons, with batch normalization and ReLU activation.
We implemented this model in TENSORFLOW [12], using the KERAS API [13]. To reduce the number of required
operations, the bias term is removed from all layers, except for the final output layer, while keeping batch normalization
on to prevent internal covariate shift [49].
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Figure 4: The neural network architecture, chosen through a Bayesian optimization over the hyperparameters, for
classifying digits from the SVHN dataset. Each convolutional block consists of a convolutional layer, max pooling,
batch normalization, and ReLU activation. The convolutional layers in the three convolutional blocks use 16, 16, and
24 filters, respectively, and each has a kernel size of 3⇥ 3. The pooling layers have a size of 2⇥ 2. The convolutional
blocks are followed by two fully-connected layers consisting of 42 and 64 neurons, with batch normalization and ReLU
activation. The bias term is removed from all layers except the final output layer.

Table 1: Number of trainable weights, floating-point operations, energy consumption and layer size in bits for each
convolutional or dense layer (not including the activation layers). Batch normalization and pooling layers are not
included as they are negligible in size and energy consumption in comparison. The energy is estimated assuming a 45
nm process using QTOOLS. The total energy and bit size includes all model layers.

Layer name Layer type Input shape Weights MFLOPs Energy [nJ] Bit size
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Conv 1 Conv2D (15, 15, 16) 2,304 0.779 1,802 18,432
Conv 2 Conv2D (6, 6, 16) 3,456 0.110 262 27,648
Dense 0 Dense (96) 4,032 0.008 26 32,256
Dense 1 Dense (42) 2,688 0.005 17 21,504
Output Dense (64) 65 0.001 4 5,200
Model total 12,858 1.71 3,918 170,816

In our case, this balance is found through a Bayesian optimization over the model hyperparameters using KERAS
TUNER [48]. The first few layers are chosen to be 2D convolutional blocks. Each block consists of a convolutional
layer followed by a max pooling layer, a batch normalization [49] layer, and a rectified linear unit (ReLU) [50, 51]
activation function. Pooling the convolutional layer output before applying the activation function reduces the necessary
operations, but does not impact the model accuracy because monotonic activation functions like ReLU commute
with max pooling (but not average pooling) [52]. Besides speeding up the model training, this choice allows us to
reduce the number of multiplications in a convolutional block at no accuracy cost. As done in other models (e.g.
ResNet [53]), performing the batch normalization before the activation function allows us to maximally exploit the
non-linear properties of the activation function, shifting its input to the region near the function’s non-linearity.

The number of filters and their sizes, together with the type and size of the pooling layers, are free hyperparameters in
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keep the size of the final dense layers small.
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shown in Fig. 4, consists of three convolutional blocks and two dense layers. The convolutional layers in the three
blocks have 16, 16, and 24 filters, respectively, and each has a kernel size of 3 ⇥ 3. The pooling layers have a size
of 2⇥ 2. The two hidden dense layers consist of 42 and 64 neurons, with batch normalization and ReLU activation.
We implemented this model in TENSORFLOW [12], using the KERAS API [13]. To reduce the number of required
operations, the bias term is removed from all layers, except for the final output layer, while keeping batch normalization
on to prevent internal covariate shift [49].

We refer to this model as the Baseline Floating-point (BF) model. The number of floating-point operations (FLOPs)
and weights for each convolutional or dense layer is listed in Table 1 (not including the activation layers). In addition,

6

2 4 6 8 10 12 14 16
Bit width

0

50

100

D
SP

 c
on

su
m

pt
io

n 
[%

]

BF
BP
Q
QP
AQ
AQP

AQ AQP 2 4 6 8 10 12 14 16
Bit width

0

25

50

75

100

LU
T 

co
ns

um
pt

io
n 

[%
]

BF
BP
Q
QP
AQ
AQP

AQ AQP

Figure 13: Resource consumption as a function of bit width for the Baseline Floating-point (BF), Baseline Pruned (BP),
QKeras (Q), and QKeras Pruned (QP) models. The heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP)
models are displayed in the right sub-plot. The model DSP (top left), LUT (top right), FF (bottom left) and BRAM
(bottom right) consumption is shown.

is used where each multiplier is used exactly once, which can be achieved by setting the reuse factor R [1] to 1 for each
layer in hls4ml.

The DSP consumption is slightly higher for the Q and QP models than the BF and BP models due to the batch
normalization layers in the QAT models being fixed to h16, 6i.

Below a bit width of 10, the DSP consumption is significantly reduced as multiplications are performed using LUTs.
DSPs are usually the limiting resource for FPGA inference, and we observe that through QAT, the DSP consumption
can be reduced from one hundred percent down to a few percent with no loss in model accuracy (as demonstrated in
Fig. 12). Above a bit width of 10, almost all the DSPs on the device are in use for the Q and QP models. This routing is
a choice of Vivado HLS during optimization of the circuit layout. This is also the reason why pruning appears to have
relatively little impact for these models: the DSPs are maximally used and the remaining multiplications are performed
with LUTs. This becomes evident when studying the LUT consumption as a function of bit width. The QP models use
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Figure 13: Resource consumption as a function of bit width for the Baseline Floating-point (BF), Baseline Pruned (BP),
QKeras (Q), and QKeras Pruned (QP) models. The heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP)
models are displayed in the right sub-plot. The model DSP (top left), LUT (top right), FF (bottom left) and BRAM
(bottom right) consumption is shown.

is used where each multiplier is used exactly once, which can be achieved by setting the reuse factor R [1] to 1 for each
layer in hls4ml.

The DSP consumption is slightly higher for the Q and QP models than the BF and BP models due to the batch
normalization layers in the QAT models being fixed to h16, 6i.

Below a bit width of 10, the DSP consumption is significantly reduced as multiplications are performed using LUTs.
DSPs are usually the limiting resource for FPGA inference, and we observe that through QAT, the DSP consumption
can be reduced from one hundred percent down to a few percent with no loss in model accuracy (as demonstrated in
Fig. 12). Above a bit width of 10, almost all the DSPs on the device are in use for the Q and QP models. This routing is
a choice of Vivado HLS during optimization of the circuit layout. This is also the reason why pruning appears to have
relatively little impact for these models: the DSPs are maximally used and the remaining multiplications are performed
with LUTs. This becomes evident when studying the LUT consumption as a function of bit width. The QP models use
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however, pruning negatively impacts the model performance. The accuracy is constant down to four bit precision, with
marginal accuracy loss down to three bits. Statistical uncertainty due to the choice of training set is also small: less
than 1%, for bit widths down to three. Using ternary quantization, the model accuracy drops to 87–88% and has a
higher statistical uncertainty. When quantizing down to binary precision, the model accuracy is reduced to 72% for
the unpruned model and 64% for the pruned model. The significant reduction in accuracy due to pruning for binary
networks is due to too little information being available in the network to accurately classify unseen data. A large
spread in model accuracy for the binary network across the 10 folds is observed, indicating that the model is less robust
to fluctuations in the training dataset. As demonstrated in Ref. [8], this can be mitigated by increasing the model size
(more filters and neurons per layer). The AQ models obtain a slightly lower accuracy than the baselines, but uses, as
will be demonstrated in Section 8, significantly fewer resources.

8 FPGA porting

The models described above are translated into firmware using hls4ml version 0.5.0, and then synthesized with Vivado
HLS 2020.1, targeting a Xilinx Virtex UltraScale+ VU9P (xcvu9pflgb2104-2L) FPGA with a clock frequency of
200 MHz. For the QKERAS quantized models, the sign is not accounted for when setting the bit width per layer during
QAT, so layers quantized with total bit width b in QKERAS are therefore implemented as fixed-point numbers with total
bit width b+ 1 in hls4ml. We compare the model accuracy, latency, and on-chip resource consumption. The accuracy
after translating the model into C/C++ code with hls4ml (solid line) for the different models, is shown in Figure 12
and compared to the accuracy evaluated using KERAS. No pre-synthesis results are shown for the BF and BP models,
as these are quantized during synthesis. Nearly perfect agreement in evaluated accuracy before and after synthesis is
observed for the Q and QP models and the translation into fixed-point precision is lossless.
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Figure 12: Model accuracy as a function of bit width for the Baseline Floating-point (BF), Baseline Pruned (BP),
QKeras (Q) and QKeras Pruned (QP) models. The heterogeneously quantized models AutoQ (AQ) and AutoQ Pruned
(AQP) are shown in the sidebar.

While the accuracy of the Q and QP models trained via QAT remains high down to a bit width of three, the accuracy
of the PTQ models fall off sharply with decreasing bit width and have almost no discrimination power for bit widths
smaller than 14. PTQ has a higher negative impact on the unpruned models, indicating that rounding errors are the
biggest cause for accuracy degradation (there are no rounding errors for zeroes, which comprise 50% of the pruned
model weights). The heterogeneously quantized models AQ and AQP have slightly lower accuracy than the baseline
h16, 6i model.

We then study the resource consumption and latency of the different models after logic-synthesis. The resources
available on the FPGA are digital signal processors (DSPs), lookup tables (LUTs), BRAMs, and flip-flops (FFs). In
Fig. 13, the resource consumption relative to the total available resources is shown. Here, a fully parallel implementation
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significantly fewer LUT resources than the unpruned equivalent. The point where most multiplications are moved from
DSPs to LUTs is marked by a steep drop in DSP consumption starting at a bit width of 10.

The heterogeneously quantized models, AQ and AQP, consume very little FPGA resources, comparable to that of the
Q and QP models quantized to a bit width of three. All models use very few FFs, below 4% of the total budget. The
BRAM consumption is also small and below 4% for all models. For the Q and QP models, the same amount of BRAMs
is used down to a bit width of four, and then is further reduced. For the BF and BP models, BRAM consumption falls
off steadily with bit width. Some dependence on bit width can be traced back to how operations are mapped to the
appropriate resources through internal optimizations in HLS. Depending on the length and the bit width of the FIFO
buffers used for the convolutional layer sliding window, HLS will decide whether to place the operation on BRAMs or
LUTs and migration between the two is expected. Most of the BRAMs, are spent on channels, the output of different
layers.

The latency and II for all models is shown in Figure 14. A total latency of about 5µs is observed for all models, similar
to the II. The latency is independent of bit width when running at a fixed clock period. We leave it for future studies to
explore running the board at higher clock frequencies.
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Figure 14: The model latency (left) and initiation interval (right) as a function of bit width for the Baseline Floating-point
(BF), Baseline Pruned (BP), QKeras (Q), and QKeras Pruned (QP) models. The heterogeneously quantized AutoQ
(AQ) and AutoQ Pruned (AQP) models are displayed in the right sub-plot.

A summary of the accuracy, resource consumption and latency for the Baseline Floating-point (BF) and Baseline
Pruned (BP) models quantized to a bit width of 14, the QKeras (Q) and QKeras Pruned (QP) models quantized to a
bit width of 7 and the heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP) models, is shown in Table 3.
Resource utilization is quoted as a fraction of the total available resources on the FPGA, and the absolute number of
resources used is quoted in parenthesis. The accuracy of the post-training quantized BF and BP models drops below
50% for bit widths narrower than 14 and can not be used for inference. The QAT models, Q and QP, quantized to a
bit width of 7 maintain a high accuracy despite using only a fraction of the available FPGA resources. The models
using the fewest resources are the AQ and AQP heterogeneously quantized models, reducing the DSP consumption by
99% while maintaining a relatively high accuracy. Finding the best trade-off between model size and accuracy in an
application-specific way can be done using AUTOQKERAS, as demonstrated in Sec. 7.

To further reduce the resource consumption, the reuse factor R can be increased. This comes at the cost of higher
latency. The model latency and resource consumption as a function of bit width and for different reuse factors for the
QP models are shown in Figure 15. The latency and II increase with R, while the DSP consumption goes down. The
LUT consumption is minimally affected by the reuse factor, consistent with the results reported in Ref. [1]. The BRAM
consumption is the same for all reuse factors, around 3%, and therefore not plotted. The corresponding study for the BF,
BP and Q models can be found in Appendix A.
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The classification performance is given in terms of receiver operating characteristic (ROC) curves that trace
the electron identification e�ciency (true positive fraction) and pion rejection e�ciency (true negative fraction)
for di�erent thresholds of the classifiers. The two GarNet-based models perform similarly and better than
the cut-based reference in terms of the electron identification e�ciency for a given pion rejection e�ciency. A
detailed comparison of the four sets of results from the GarNet-based models in the inset reveals that the
continuous model performs slightly better than the quantized model, and that the di�erence between the
Keras and HLS implementations is smaller for the quantized model.
The regression performance is given in terms of the response (Epred/Etrue). Distributions of the response
are summarized in 10 GeV bins of Etrue, separately for the continuous model, quantized model, and the
weight-based reference. In each summary, the horizontal line in the box corresponds to the median of the
distribution, the top and bottom of the box to the upper and lower quartiles, and the upper and lower ends
of the whiskers to the 95th and 5th percentiles. The GarNet-based models exhibit narrower spreads of the
response distributions in most of the bins, with the continuous model again performing slightly better than
the quantized model.

Figure 4: Classification (left) and regression (right) inference performance of the continuous and quantized
GarNet-based models and the reference algorithms. Results from the Keras and HLS implementations are
shown for the GarNet-based models. The classification performance is quantified with a ROC curve of
electron identification e�ciency versus pion rejection e�ciency. The inset in the left graph shows a close-up
view of the e�ciency range 0.90–0.96 for both axes. The regression performance is quantified as the response
(Epred/Etrue) in 10 GeV bins of Etrue. The horizontal line in the box corresponds to the median of the
distribution, the top and bottom of the box to the upper and lower quartiles, and the upper and lower ends
of the whiskers to the 95th and 5th percentiles.

The di�erences between the Keras and HLS implementations are due to the numerical precision in the
computation. While the former represents all fractional numbers in 32-bit floating-point numbers, the latter
employs fixed-point numbers with bit widths of at most 18. Consequently, for the quantized model, where
the encoder and decoder of the GarNet layers employ integer weights for inference, the di�erence between
the two implementations are smaller.
For both subtasks, the GarNet-based models generally outperform the reference algorithms. The reference
algorithm has narrower spread of the response in some energy bins for the regression subtask. However, it is
important to note that the weights and biases appearing in Eq. (14) are optimized for a specific pileup profile,
while in a real particle collider environment, pileup flux changes dynamically even on the timescale of a few
hours. In contrast, algorithms based on inference of properties of individual hits, such as the GarNet-based
models presented in this study, are expected to be able to identify hits due to pileup even under di�erent
pileup environments and thus to have a stable inference performance with respect to change in pileup flux.
Since a detailed evaluation of application-specific performance of GarNet is not within the scope of this
work, we leave this and other possible improvements to the model architecture and training to future studies.

11

To verify that GarNet can infer relations between individual vertices without edges E in the input, the
following test is performed. Using the two events shown in Fig. 3, the energy of each hit in the clusters is
increased one at a time by 10%, and the inference with the continuous model is performed for each perturbed
event. If the model has learned to perfectly distinguish the primary particle from pileup at the vertex level, a
small change in the energy of a hit from pileup should result in no change in the predicted particle energy.
In Fig. 3b, each hit in the cluster is colored by the ratio of the change of predicted particle energy and the
amount of perturbation (�Epred/�h). While some hits in Fig. 3a with fprim = 0 appear with �Epred/�h > 0,
a general correspondence between fprim and �Epred/�h is observed. The occurrence of �Epred/�h > 1 is
expected, given the extrapolation required to predict the full particle energy from the energy of the hits
included in the cluster. With this test, we are able to probe how the GarNet-based model is learning the
structure of the graph.

5.4 Model synthesis and performance

The latency, II, and resource usage of the FPGA firmware synthesized from the HLS implementations
are summarized in Table. 1. Vitis Core Development Kit 2019.2 [47] is used for synthesis, with a Xilinx
Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i) as the target device and a clock frequency
of 200 MHz. The reported resource usage numbers reflect the synthesis estimates from Vivado HLS. The
latency and II reported here are the maximum values for samples with full Vmax vertices; the actual HLS
implementation allows early termination of the serial reuse of the vertex-processing logic unit for samples
with fewer vertices. The area under the ROC curve (AUC) and overall response root mean square (RMS) are
used to summarize the performance.

Table 1: Summary of the latency, II, FPGA resource usage metrics, and inference accuracy metrics of the
synthesized firmware. The reported resource usage numbers reflect the synthesis estimates from Vivado
HLS. The target FPGA is a Xilinx Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i), which
has 5,520 DSPs, 663,360 LUTs, 1,326,720 FFs, and 77.8 Mb of BRAM [48]. The utilized percentage of the
targeted FPGA resources are denoted in the square brackets.

Model Vmax Rreuse
Latency Interval DSP (103) LUT (103) FF (103) BRAM (Mb) ROC Response
(cycles) (cycles) AUC RMS

Continuous 128 32 155 55 3.1 [56%] 57 [9%] 39 [2.9%] 1.8 [2.3%] 0.98 0.23
Quantized 128 32 148 50 1.6 [29%] 70 [11%] 41 [3.1%] 1.9 [2.4%] 0.98 0.24
Quantized 64 16 99 34 1.6 [29%] 63 [9%] 38 [2.9%] 1.8 [2.3%] 0.96 0.24
Quantized 32 8 75 26 1.4 [25%] 52 [8%] 33 [2.5%] 1.8 [2.3%] 0.86 0.37
Quantized 16 4 63 22 1.5 [27%] 57 [9%] 37 [2.8%] 1.8 [2.3%] 0.64 0.36

Comparing the continuous and quantized models with Vmax = 128, the former has a longer latency and II and
consumes substantially more DSPs. On the other hand, the quantized model uses more LUTs, mainly for the
multiplications in the GarNet encoders and decoders, as discussed in Section 4. However, it is known that
the expected LUT usage tend to be overestimated in Vivado HLS, while the expected DSP usage tends to be
accurate [8, 2]. The DSP usage of 3.1 ◊ 103 for the continuous model is well within the limit of the target
device, but is more than what is available on a single die slice (2.8 ◊ 103) [48]. The quantized model fits in
one slice in all metrics. Given the small di�erence in the inference performance between the two models, it is
clear that the quantized model is advantageous for this specific case study.
The latency of the synthesized quantized model at 148 clock periods, corresponding to 740 ns, satisfies the
LHC L1T requirement of O(1) µs execution. However, the II of 50 clock periods (250 ns) implies that the
logic must be time-multiplexed tenfold to be able to process a single cluster per LHC beam crossing period of
25 ns. With O(100) or more clusters expected per beam crossing in the collision environment of HL-LHC, the
throughput of the synthesized firmware is therefore inadequate for a reasonably sized L1T calorimeter system
with O(100) FPGAs, and requires down-scoping or implementation improvements.
The simplest down-scoping measure is to reduce the size of the input. This is e�ective because the most
prominent factor driving both the latency and the II of the firmware is Rreuse (see Eq. (10)), which in turn is
determined by Vmax to be able to fit the logic in a single chip. To test how short the II can be made while
retaining a reasonable inference performance, additional models with Vmax = 64, 32, and 16 are trained and
synthesized into FPGA firmware. Clusters with more hits than Vmax are truncated by discarding the lowest
energy hits. The fraction of truncated clusters for the three Vmax values are 27%, 85%, and 99%, respectively.
The results of synthesis of the additional models are given in the last three rows of Table 1. The values of
FPGA resource usage metrics are similar in all quantized models because the ratio Vmax/Rreuse is kept at 4.
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of hits to consider smaller clusters, as explored later. In fact, 0.2% of the events resulted in clusters with more
than 128 hits, for which the lowest energy hits were discarded from the dataset. Each hit is represented by
four numbers, corresponding to the hit coordinates, given in x, y, and z, and energy. The x and y coordinates
are relative to the seed cell. The dataset consists of 500,000 samples, split evenly and randomly into e≠ and
fi

± events, stored as NumPy [35] arrays in HDF5 format [36]. The dataset together with the ground truth
information is available on the Zenodo platform [37].

Figure 3: Examples of electron (left) and pion (right) events. Values in parentheses in the graph titles are
the respective energy depositions contained in the cluster around the seed hit. Points represent hits in the
detector, with their coordinates at the center of the corresponding detector cells and the size of the markers
proportional to the square root of the hit energy. Opaque points are within the cluster, while the translucent
ones are not. In (a), the point color scale from blue to red corresponds to the primary fraction (see Section 5.1
for definition). In (b), the color scale from blue to green corresponds to �Epred/�h, which is an indication of
the importance the neural network model places to individual hits for energy regression. See Section 5.3 for
details.

5.2 Task and model architecture

The task in this study is to identify the nature of the primary particle and to simultaneously predict its energy,
given the hits in the cluster. The ability to reliably identify the particle type and estimate its energy at the
cluster level in a local calorimeter trigger system greatly enhances the e�cacy of high-level algorithms, such as
particle-flow reconstruction [38–40], downstream in the L1T system. However, because of the distortion of the
energy deposition pattern in the cluster due to pileup, particle identification based on collective properties of
the hits, such as the depth of the energy center of mass, can achieve only modest accuracy. Furthermore, only
half of the pion events have 95% of the energy deposition from the pion contained in the cluster, requiring
substantial extrapolation in the energy prediction. This task is thus both practically relevant and su�ciently
nontrivial as a test bench of a GarNet-based ML model.
The architecture of the model is as follows. First, the input data represented by a two-dimensional array
of Vmax ◊ Fin numbers per cluster are processed by a stack of three GarNet layers. The parameters
(S, FLR, Fout) for the first two layers are (4, 8, 8) and for the last layer are (8, 16, 16). The output of the third
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