Overview of Ellis QPhML
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European Laboratory for Learning and Intelligent Systems

Our Mission

We are at a crossroads where

1. Machine learning is at the heart of a technological and societal artificial intelligence revolution involving multiple sister disciplines,
with large implications for the future competitiveness of Europe.

2. Europe is not keeping up: many of the top labs, as well as many of the top places to do a PhD, are located in North America; moreover,
Al investments in China and North America are significantly larger than in Europe.

3. the distinction between academic research and industrial labs is vanishing, with a significant part of the basic research now being
done in industry (with substantial research freedom, and higher salaries), rapid commercialization of results, and academic institutions
worldwide struggling to retain their best scientists (with negative implications not only for research but also for the education of future
talent). This further weakens Europe since most of the companies doing top research in this field are controlled from the US (or China) —
many European companies whose future business crucially depends on Al are not perceived as competitive.

As an important measure to address these points we propose to found a European Lab for Learning and Intelligent Systems (ELLIS),
involving the very best European academics while working together closely with basic researchers from industry.

The mission of ELLIS is to benefit Europe in two ways:

1. We want the best basic research to be performed in Europe, to enable Europe to shape how machine learning and modern Al change the
world.

2. We want to have economic impact and create jobs in Europe, and believe this is achieved by outstanding and free basic research,
independent of industry interests.
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At this point, we have a set of 13 ELLIS Programs:

e ELLIS Health =

e ELLIS Robot Learning: Closing the Reality Gap!

e Geometric Deep Learning [

e Human-centric Machine Learning [

e Interactive Learning and Interventional Representations [
e Machine Learning and Computer Vision [

e Machine Learning for Earth and Climate Sciences

e Natural Intelligence [

e Natural Language Processing [

» Quantum and Physics Based Machine Learning [

e Robust Machine Learning [

e Semantic, Symbolic and Interpretable Machine Learning [
e Theory, Algorithms and Computations of Modern Learning Systems ("



ELLIS PhD & Postdoc Program

The ELLIS PnhD & Postdoc Program supports excellent young researchers by connecting them to leading researchers across Europe and
offering a variety of networking and training activities, including summer schools and workshops. ELLIS PhDs and postdocs conduct cutting-
edge curiosity-driven research in machine learning or a related research area with the goal of publishing in top-tier conferences in the field.

ELLIS PhD Program - Call for applications - Deadline for applications: November 15, 2021

Tracks

There are two tracks within the ELLIS PhD & Postdoc Program: the academic track and the industry track. These tracks have separate
requirements for admission and criteria for activity during the appointment, but otherwise offer the same benefits, network and resources to
the applicant.

Academic track

PhD students and postdocs in the academic track strive for international collaboration as they partner with two European academic
institutions in their research. These candidates are supervised by one ELLIS fellow/scholar or unit faculty and one ELLIS
fellow/scholar/member from different European countries, and they visit the exchange institution for min. 6 months (the partitioning of this
time is flexible). Normally, the exchange is partially sponsored by the exchange institution; ELLIS PhD students and postdocs are also eligible
to apply for the ELISE mobility grant.

Industry track

The industry track is open to PhD and postdoc candidates that will be part of a collaboration between an academic institution and an industry
partner, and will spend time conducting research at the industry partner during their PhD or postdoc. The candidate will spend a minimum of
50% of their time at the academic institution, and at least 6 months (cumulative) with the industry partner.

For this track, both advisors may be located in the same country. One advisor will represent the academic institution and the other the
industry partner. Both the academic and industry advisor must be ELLIS members and at least one of them a fellow, scholar or unit faculty.



Past Events

Second NLP ELLIS
Workshops

30 Jul 20217 - 30 Jul 2021
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open to all ELLIS PhOs & Postdocs

ELLIS PhD and Postdoc
Summit

Online via Zoom
12 Jul 2021 - 13 Jul 2021

ELLIS Program "Semantic
Symbolic, and Interpretable
Machine Learning" Kick-off

07 Jun 2021 - 07 Jun 2021

Artificial Intelligence and
Robotics in the perspective of
social challenges

28 Jul 2021 - 28 Jul 2021

Seminar “Research in
videogames: use of deep
learning for saliency
estimation and cheating
prevention®

30 Jun 2021 - 30 Jun 2021

IEEE 2021

ICRA

May 30 to June 5, 2021

Xi‘anechina

ICRA 2021-Workshop on
Semantic Representations for
Robotics through Continuous
Interaction and Incremental
Learning

31 May 2021 - 31 May 2021

French-German Machine
Learning Symposium

.~

% 10 May 2021 - 11 May 2021
ELLIS workshop on GSI 2021 - LEARNING
Causethical ML GEOMETRIC STRUCTURES

26 Jul 2021 - 26 Jul 2021 Paris, France

21 Jul 2021 - 23 Jul 2021

e
ELLIS Symposium Workshop
on Geometric Deep Learning
for Medical Imaging

al Scientific

scovery

02 Mar 2021 - 02 Mar 2021

Workshop on Artificial
Scientific Discovery

ELLIS Program “Interactive
Learning and Interventional
Representations” Workshop

29 Jun 2021 - 01 Jul 2021

21 Jun 2021 - 21 Jun 2021

"About Time" - Seminar by
Arnold Smeulders

30 Sep 2020
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INFORMATION  MACHINE L

PROCESSING LEARNING

ELLIS Human-Centric
Machine Learning Workshop

ELLIS-ESA workshop on
guantum computing for huge
data analysis, simulation and
potential applications to Earth
observation

10 May 2021 - 10 May 2021

Online Workshop on Quantum
and Physics based machine

27 May 2021 - 27 May 2021 learning

INTERNATIONAL VIRTUAL
COVID-DATA CHALLENGE

28 Apr 2021 - 29 Apr 2021

PSL Intensive Weeks

Online
29 Mar 2021 - 02 Apr 2021
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Open Challenges and Future ELLIS Health Workshop:

Directions of NLP Explainable Machine Learning
24 Feb 2021 - 25 Feb 2021 & Biological Mechanisms
Online
16 Dec 2020

ELLIS Units: Official Launch

15 Sep 2020 - 15 Sep 2020

Workshop on Self-Supervised
Robot Learning

13 Jul 2020
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Intelligence as Key
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Medicine
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responsible Al - An
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Foundations of Algorithmic
Fairness

12 Mar 2021 - 16 Mar 2021
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Bi-weekly seminars on
Automatic Machine Learning

03 Dec 2020

Al4Science Kickoff Workshop

08 Jul 2020

CIFAR/ELLIS Discussion on
Contact Tracing

23 Jun 2020



ELISE has issued its first open call for SMEs and Start-ups

Businesses that develop Al-based solutions and applications can apply for funding of up to 60,000 euros

29 April 2021 Announcement

W ELISE ®opencall @ funding @ SMEs ® Start-ups @ Al @ machine learning

elise

1st Open Call

LOOKING FOR Al
STARTUPS & SMES

Appity until Juty 1

SUBMIT YOUR PROPOSAL TO GET UP TO €60.000 OF FUNDING

The European Network of Al Excellence Centres (ELISE) will select 16 SMEs and
start-ups in one of the ELISE/ELLIS focus areas.

The European Network of Al Excellence Centres (ELISE) is a network of artificial intelligence
research hubs where the best European researchers in machine learning and Al work
together to attract talent, foster research through collaboration, and inspire and be inspired
by industry and society.

Inits first open call, ELISE will select 16 SMEs and start-ups that develop Al services or
applications. The companies selected will take part in a six-month program and receive up to
60,000 euros in funding. While focus areas are based on ELISE/ELLIS research programs,
proposals for projects that use machine learning to address major societal and economic
challenges will also be considered. The deadline for applications is July 1, 2021.

More details can be found here. Join the live webinar on June 16 (12 PM CEST) for a Q&A;
you can register here.



DALI 2019b - Data, Learning and Inference

About Venue Participants Program Registration Activities

QPhML2020 Program Organizers EllisESA2021  Aims  Program  Organizers

ELLIS-ESA Workshop 2021
Quantum Algorithms and Machine Learning @ esa

for huge Data Analysis, Simulation
and potential Earth Observation Applications
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Milan - Tibingen - Nijmegen, July 6-8
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The workshop will be held online. Details on how to connect will be announced soon The Ellis program Quantum and Physics based machine learning (QPhML) is part of the recent

European initiative called ELLIS (European Laboratory for Learning and Intelligent Systems) to
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» stimulate research on machine learning by building networks of top research groups in Europe.
European Laboratory for Learning and Intelligent Systems
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Learn more: [Ellis initiative, Ellis Fellows QPhML Program]




Ellis Fellows Program Quantum and

Physics based Machine Learning (QPhML)
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Ellis Fellows
Bert Kappen (program director) Department of Biophysics, Radboud University (Nijmegen). [web]

Riccardo Zecchina (program director) Department of Decision Sciences, Bocconi University (Milan).
[web]

Miguel Angel Delgado Department of Theoretical Physics, Universidad Complutense (Madrid). [web]
David Gross Institute for Theoretical Physics, University of Cologne (Cologne). [web]

Florian Marquardt Institute for Theoretical physics, Max Planck Institute (Erlangen). [web]

Matthias Rupp Department of Theory, Fritz-Haber-Institut of the Max Planck Society (Berlin). [web]
Gabor Csanyi Department of Engineering, University of Cambridge (Cambridge). [web]

Florent Krzakala Department of Physics, Ecole Normal Superieur (Paris). [web]

Giulio Biroli Department of Physics, Ecole Normal Superieur (Paris). [web]

Lenka Zdeborova Institute for theoretical physics, University Paris-Saclay (Paris). [web]

Jens Eisert Dahlem Center for Complex Quantum Systems Free University Berlin (Berlin). [web]
Giuseppe Santoro SISSA (Trieste). [web]

Remi Monasson Department of Physics, Ecole Normal Superieur (Paris). [web]

Carlo Baldassi Department of Decision Sciences, Bocconi University (Milan). [web]

Vedran Dunjko Leiden Institute for Advanced Computer Science, University Leiden (Leiden). [web]
Giuseppe Carleo Center for Computational Quantum Physics, Flatiron Institute (New York). [web]
Marc Mezard Department of Physics, Ecole Normal Superieur (Paris). [web]
Nicolas Regnault Department of Physics, Ecole Normal Superieur (Paris). [web]
Jorge Kurchan Department of Physics, Ecole Normal Superieur (Paris). [web]
Matthias Troyer ETH Zurich and Microsoft Research. [web]

Manfred Opper TU (Berlin). [web]

Hans Briegel Institut flr Theoretische Physik, University of Innsbriick (Innsbruck). [web]

Aram Harrow MIT (Boston). [web]

Valentina Ros Department of Physics, Ecole Normal Superieur (Paris). [web]

Andrea Rocchetto Department of Computer Science, University of Texas at Austin, (Austin). [web]

Frank Noe Al4Science, Freie Universitaet (Berlin). [web]

Quantum enhanced machine learning

Quantum devices are nearing the noisy intermediate scale quantum (NISQ) era,
corresponding to machines with 50 to 100 qubits and capable of executing circuits with
depths on the order of thousands of elementary two qubit operations. NISQ devices may
provide computational advantages over classical supercomputers for various machine
learning problems, which includes sampling from hard-to-simulate probability distributions
for Bayesian methods and the Quantum Boltzmann Machine and linear algebra problems
(for instance for kernel methods or deep learning). It is hoped that the application of NISQ
technology to machine learning may be one of the first instances exhibiting genuine
quantum advantages.

Statistical physics approach to machine learning

Noise plays a fundamental role for learning in large neural networks. Rather than designing
reliable bits and use software to generate random numbers, an appealing alternative is to
design hardware that is noisy by design. Such devices would be much more energy efficient.
Methods from non-equilibrium statistical physics are well suited to improve our
understanding of stochastic systems. An example is the use of physically coupled replicas
that have been shown to be very effective for hard combinatoric or strongly non-linear
learning problems. In addition, the observation that physical replicas resemble Trotterized
quantum systems provides a promising new research direction for the design of stochastic
or quantum learning algorithms. Another link between quantum and stochastic systems is
the observation that sign free quantum systems can be mapped onto classical stochastic
diffusion problems.

Using machine learning for quantum physics

The challenge of quantum many-body physics is to efficiently describe and control
exponential numbers of parameters of quantum systems. Better characterization of such
systems will lead to the understanding of quantum materials such as high-temperature
superconductors or topological insulators. Enhanced control of immense parameter spaces
will improve the understanding and design of quantum devices, enabling quantum
computers and networks. For this problem, machine learning offers a new option.



Quantum based ML

* Quantum learning theory (Aram
Harrow, Vedran Dunjko, Andrea
Rochetto, Jens Eisert)

* Tensor networks for ML (Jens Eisert,
Hans Briegel)

 Variational/Parametrized circuits
(Marcello Benedetti, Hans Briegel,
Jens Eisert, Christian Gogolin, Aram
Harrow)

e Quantum Boltzmann Machine (Bert
Kappen, Leonard Wossnig)

 Autonomous learning in
cIassicaI/c?uantum systems (Bert
Kappen, Floriant Marquardt)

 Quantum applied machine learning
(Giuseppe Carleo, Gabor Csanyi,
Christian Gogolin, Florian
Marquardt)

* Quantum Chemistry (Mathias Rupp,
von Lilienfeld, Leonard Wossnig,
Frank Noe)

* Quantum RL (Hans Briegel, Vedran
Dunjko)



Quantum Learning Theory
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NP: solution verifiable in poly time
Pspace: solvable with poly memory
BQP: Bounded Quantum Polynomial

It is conjectured that BQP solves hard problems outside
of P, specifically, problems in NP. Examples are

Wl

* Integer factorization (Shor’s algorithm) O (eN

>—>O(N2)

* Solving sparse linear system (HHL) O(N)— O (logN)

Aram Harrow, Vedran Dunjko, Andrea Rochetto, Jens Eisert)



Quantum applied machine learning

Solving the Quantum Many-Body Problem

with Artificial Neural Networks
Heisenberg 2D
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Variational/parametrized circuits

Supervised learning with quantum enhanced feature spaces

Vojtech Havlicek!,* Antonio D. Cércoles!, Kristan Temme!, Aram W. Harrow?

(I) . f - Q —> | (D(f)) ((D(a?) ’ Abhinav Kandala!, Jerry M. Chow!, and Jay M. Gambetta'
YIBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA and

2 Center for Theoretical Physics, Massachusetts Institute of Technology, USA
(Dated: June 7, 2018)
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Modeling neural network activity

Neuron number

time (20 ms)

(a) One repeat of neural activity of 160 salamander retinal ganglion cells
[Schneidman et al., 2006].

Quantum Boltzmann Machine
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Can we design a Hamiltonian such that its ground state represents a given (data) ol 6! i)
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The quantum State iS a denSity matrix (b) QBM Training performance. (c) QBM Rank-1-ness. (d) BM and QBM test performance
on 28 independent test sets.
1
p= ZeH Z = Tr(eH) H = Z Hw,
r Parity problem
with w, free parameters. Data are generated such that even parity states have ¢(s) > 0 and odd states have
q(s) = 0.

The target is a rank-1 density matrix, computed from the data distribution g:

1110

n=18)(l  (slg) = Vq(s) "
Learning is to find w, that minimize the relative entropy S (7, p) by gradient descent: g1 o
3s
A r= —€,— 107
w € 8Wr 107% 107 10°

q(s)

QBM learns a rank 1 solution: KL{(g|pgsm) = 1.31 x 1075
BM cannot learn this problem: KL(g|pym) = 0.451

Kappen 2020
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Surface dopant network, based on orbital memory — may be high temperature compatible (currently 4K)
Large separation of time scales, leads to integrated neurons/synapses

Material exhibits self-adaption

Spin-based properties and response to external fields, unexplored.

Radboud consortium: Khajetoorians, Kappen, Katsnelson
e Links to Twente: van der Wiel
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Physics based ML

e Statistical physics of learning (Riccardo Zecchina, Carlo Baldassi, Marc
Mezard, Florent Krzakala, Giulio Biroli, Lenka Zdeborova, Remi
Monasson)

 Random satisfiability

* Error correction

* Compressed sensing

* Entropy based learning for binary perceptron



Random satisfiability [Mezard et al., 2002]

The K-satisfiability problem (K-sat) asks whether one can satisfy simultaneously a
set of M constraints between N Boolean variables x; = 0, 1, where each constraint
is a clause built as the logical OR involving K variables. An instance of 3-sat is

(X1 VxXoVax3) A(xyVxgVxs)A...

3-sat is at the core of combinatorial optimization theory. An efficient algorithm for
solving 3-sat would immediately lead to other algorithms for efficiently solving thou-
sands of different NP hard combinatorial problems [Garey and Johnson, 1979].

Optimisation problems
Assignment (ueasyu’ in P) Vincent & Supermarket
Travelling salesman (“hard”, NPC) D@

Hamiltonian path (“hard”, NPC) S
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Random satisfiability [Mezard et al., 2002]

Define @« = M/N. K-sat has many solutions when « is small (SAT phase) and no
solutions when « is large (UNSAT phase). Random 3-sat can be analyzed with the

cavity method.

Fig. 2. The phase diagram of the o3 F
random 3sat problem. Plotted is )
e,, the number of violated claus-
es per variable (red), versus the _
control parameter a, which is SAT (EO =0 )O UNSAT (E 0 >0)
the number of clauses per vari- L e 1
able. The SAT-UNSAT transition 002 , T " o O @ o0
occurs at a = a, ~ 4.256. The . O . . . .
green line is e, the threshold . . .
energy per variable, where local . . . . .
algorithms get trapped. The blue ooy | e | . . . . . . .
line is the complexity 2, of satis- ’
fiable states, equal to 1/N times O . O
the logarithm of their number. o
* 1 state Many states Many states
. N QE=0 @E>0 @E>0
3.8 T 4 4.2 l 4.4 4.6 4.8 5 ].'f.'
O e o @ o =4267 o =M/N

(Red) Lowest energy eg = Ey/N versus a. When ¢y > 0 the problem is UNSAT. (Green). Lowest
energy ey, = Ew/N that can be obtained with local algorithms. (Blue) Number of states e* with
E =0.

When a; < a < a, the clauses cause frustration, similar to the SK spin glass:
there are local minima either E = 0 or E > 0 and it is hard to find a E = 0 solution
using local methods (such as iterative improvement or simulated annealing).



Random satisfiability [Mezard et al., 2002]

The simplest algorithm to solve the 3-sat problem is to use the max product (or
equivalently max sum) on the factor graph. Because of the zero-one nature of the
energy, each message m,;_,,(x;) or m,_,;(x;) has only two values =+1.

The survey propagation algorithm gen-
eralizes this to three values (-1,0,1).
Furthermore, a message is a distribution
over these three values.

The SID (survey inspired decimation) algorithm is an iterative prodedure where
in each iteration a subset of variables are clamped to +1 based on the survey
progapation result. In the hard regime (@ = 4.2) SID confirms the solution on
existing benchmarks for N = 2000. SID obtains solutions up to instances of size
N = 100.000 where no other method can be appied. The complexity of SID is
quadratic in N.

See [Mezard and Zecchina, 2002] for details.



Compressed sensing

Given an unknown signal which is a N-dimensional vector x = (xy,...,xy), We
make M measurements y; = ?’z , Fijx;. For instance, measurements of Fourier
modes or wavelet coefficients. The observer knows the M x N matrix F and the

measurements y. His aim is to reconstruct x.
When M = N the solution is obtained by matrix inversion: x = F~ly.

When M < N the problem is underdetermined and there are many solutions.

X )

Belief propagation = mean field equations

«Factor graph» él

i «variables»

Each constraint involves

all the variables: «long-range»

weak interactions (e.g. Curie EM-BP
Weiss model for magnets).

Mean field is exact™

constraints

N P
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[Krzakala et al., 2012]



Binary perceptron

Inputs  Weights Net input Activation
function function

@ » output

Schematic of Rosenblatt’s perceptron.

Continuous Perceptron learning is easy and can learn 2N patterns.
Binary perceptron learning is NP hard and can learn 0.83N patterns

Optimization is hard, is improved through local entropy measure, which
Is mapped on a replicated system
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MNIST

O 00QO000Y * On the MINIST benchmark problem,
/01 LY Z )V 7 | using a network with three hidden
AA2AL2ZAA S layers we achieved ~ 1.7% test error, a
33323732 33 very good result for a network with
YA GUgAEaY Y 44 binary weights and activations and
S5 858545 ~—95 with no convolutional layers.
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Future aim QPhML

* Integrate physics and machine learning (quantum and stat phys)
* Organize annual meeting
» Special topics meetings (ESA, CERN?)
* Special issues
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Journal of Statistical Mechanics: Theory and Experiment Journal of Statistical Mechanics: Theory and Experiment

Machine Learning 2019 Machine Learning 2020



