SELF-INTERACTING (DARK) RADIATION AND THE HUBBLE TENSION

ArXiv:2012.11830

Collaboration with Thejs Brinckmann and Marilena LoVerde

Jae Hyeok Chang

Johns Hopkins University and University of Maryland

2021/06/08 The 2021 CERN-CKC Theory Workshop

THE HUBBLE PARAMETER TENSION

We live in an expanding Universe

• What is the speed of the expansion?

Hubble Parameter and Hubble's Law

•
$$ds^2 = dt^2 - a(t)^2 \gamma_{ij} dx^i dx^j$$

• Hubble Parameter : $H \equiv \frac{\dot{a}}{a}$

- Hubble's Law : $z = H_0 D$ ($z \ll 1$)
 - $\circ z$ is the redshift
 - \circ H_0 is the Hubble parameter today
 - \circ D is the proper distance

Luminosity and Angular Distances

Luminosity Distance

$$J_{obs} = \frac{L_s}{4\pi D_L^2}$$
$$D_L = D/a$$

Standard Candle

Angular Distance

$$\sin \theta = \frac{d_s}{D_A}$$
$$D_A = aD$$

Standard Ruler

Hubble Parameter H_0 Measurements

- Large difference between early vs late H₀ measurement
- Is it just due to systematics?

What if our knowledge is wrong?

• If the standard candle or the standard ruler is wrong, we predict different H_0 $H_0 \propto \frac{1}{L_s}$, $H_0 \propto \frac{1}{d_s}$

 In this talk, we focus on the standard ruler for early Universe : BAO scale

Baryon Acoustic Oscillation

http://www.astro.ucla.edu/~wright/BAO-cosmology.html

$$r_s = \int_0^{a_r} da \frac{c_s}{a^2 H}$$

$$H^2 = \frac{8\pi G}{3}\rho$$

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} = \rho_{\gamma} \left(1 + N_{\rm eff} \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}} \right)^4 \right)$$

•
$$H_0 \propto \frac{1}{r_s}$$
 from CMB

• Additional radiation predicts smaller r_s , hence large H_0

Additional Radiation

- Decreases $r_s \rightarrow$ Helps to solve the Hubble tension
- Suppresses small scales
 → Conflicts with the observations
- Solutions : Interacting Radiation Kreisch et al, 1902.00534
 → Interacting radiation has smaller sound
 speed, so it can compensate the suppression
- The Kreisch paper finds larger H_0 with self-interacting neutrinos

SELF-INTERACTING NEUTRINOS

The Majoron Model

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} g_{ij} \bar{\nu}_i \nu_j \phi$$

 We introduce a scalar coupled to neutrinos, called the Majoron

• For simplicity, we assume the diagonal and universal coupling : $g_{ij} = g_{\phi} \delta_{ij}$

Neutrino Self-Interactions

- Neutrinos interact with each other by exchanging a Majoron
- For light Majoron : $\Gamma \sim g_{\phi}^4 T$

• For heavy Majoron :
$$\Gamma \sim G_{\nu}^2 T^5$$
, $G_{\nu} \equiv \frac{g_{\phi}^2}{m_{\phi}^2}$

Decoupling and Recoupling

- Interaction is active if $\Gamma > H \sim \frac{T^2}{m_{pl}}$
- Γ/H increases or decreases depending on Majoron mass

The Opacity Function $O(T, E_1) = 1 - \exp\left[-\int_{t(T)}^{t_0} \Gamma_{\nu} dt\right]$

- Opacity indicates the fraction of particles that have interacted at least once from the time t to today.
- We calculate thermal averaged opacity $\langle O(T) \rangle$

• Define
$$T_d$$
 where $\langle O(T) \rangle = \frac{1}{2}$

The Opacity Function

Decoupling Redshift

Experimental Constraints

COSMIC MICROWAVE BACKGROUND

Cosmic Microwave Background

$$F_{\nu}(\mathbf{n};\eta,\mathbf{k}) = \frac{4\pi}{\rho_{\nu}a^4} \int \kappa^3 d\kappa f_{\nu}^{(0)}(\kappa) \cdot \delta f_{\nu}(\kappa;\eta,\mathbf{x}) \cdot e^{i\mathbf{k}\cdot\mathbf{x}} d^3\mathbf{x} = \sum_{l=0}^{\infty} (2l+1) (-i)^l \cdot F_{\nu,l}(\eta,\mathbf{k}) \cdot P_l\left(\frac{\mathbf{k}\mathbf{n}}{k}\right)$$

Neutrino Perturbations

Decompose with Legendre polynomial

Gorbunov and Rubakov, 2011 ²¹

$$\pi_{\nu} = \frac{3}{16\pi} \int d\mathbf{n} \left(\left(\frac{\mathbf{kn}}{k}\right)^2 - \frac{1}{3} \right) F_{\nu} = \frac{6\pi}{16\pi} \int_{-1}^1 dx \frac{2}{3} P_2(x) F_{\nu} = -\frac{1}{2} F_{\nu,2}$$

For neutrino

$$\pi'_{\nu} = \frac{4}{15}k^2v_{\nu} + \frac{3}{10}kF_{\nu,3}$$

• π_{ν} evolves freely

For photon

$$\pi_{\gamma}' - rac{4}{15}k^2v_{\gamma} + rac{3}{10}kF_{\gamma,3} = -rac{9}{10} au'\pi_{\gamma}$$

- au' is the interaction rate
- The interaction suppresses π_{γ}

Gorbunov and Rubakov, 2011 ²²

$$ds^{2} = a^{2}(\eta)[(1+2\Phi)d\eta^{2} - (1+2\Psi)d\mathbf{x}^{2}]$$
$$\Delta (\Phi + \Psi) = -12\pi Ga^{2} \cdot [(\rho + p)\pi]_{tot}$$

• If
$$\pi = 0$$
, we have $\Psi = -\Phi$

• In Standard Model, $\Psi = -\left(1 + \frac{2}{5}R_{\nu}\Phi\right) \approx -1.16\Phi$ where $R_{\nu} = \frac{\rho_{\nu}}{\rho} \approx 0.41$ due to neutrinos

Gorbunov and Rubakov, 2011 ²³

$$\delta_{\gamma}' - \frac{4k^2}{3}v_{\gamma} + 4\Psi' = 0,$$
$$v_{\gamma}' + \frac{1}{4}\delta_{\gamma} + \pi_{\gamma} + \Phi = -(v_{\gamma} - v_B)\frac{\tau'}{k}$$

- Phase shift
- Amplitude suppression

If Neutrinos have Self-Interaction

For neutrino

$$\pi'_{\nu} = \frac{4}{15}k^{2}v_{\nu} + \frac{3}{10}kF_{\nu,3} - \frac{9}{10}\tau'_{\nu}\pi_{\nu} \qquad \qquad \pi'_{\gamma} - \frac{4}{15}k^{2}v_{\gamma} + \frac{3}{10}kF_{\gamma,3} = -\frac{9}{10}\tau'\pi_{\gamma}$$

- π_{ν} suppressed at early time
- After decoupling, π_{ν} starts to evolve
- Can compensate the effect of additional radiation

Cyr-Racine and Sigurdson, 1306.1536 ²⁵

Power Spectrum Comparison

Kreisch et al, 1902.00534 ²⁶

RESULTS

Data Sets

- P18: Planck 2018 CMB temperature and polarization auto- and cross-correlation
- lens: Planck 2018 CMB lensing
- BAO: 6dFGS, SDSS DR7 MGS, and BOSS DR12
- RI9: Prior on the Hubble parameter today, H₀, from Riess et al. 2019

Parameterization

We have 4 new parameters in addition to 6 basic cosmological parameters

- N_{eff,fs} :The number of free-streaming species
- N_{eff,int} :The number of interacting species
- $N_{\rm eff} = N_{\rm eff,fs} + N_{\rm eff,int}$
- z_{dec} : The decoupling redshift

•
$$\Sigma m = \sum_i N_{\text{eff},i} m_i$$

Implementation in CLASS

• We suppress $F_{\nu,l\geq 2}$ with a transition function

$$\mathcal{T}(z) = \frac{1}{2} \left(\tanh\left(\frac{z - z_{\text{dec}}}{\Delta z_{\text{dec}}}\right) + 1 \right) \quad \text{Choi et al, } 1804.10180$$

- $\Delta z_{dec} = 0.4 z_{dec}$ to match the opacity function
- We've checked this approximation is valid for the decoupling model

For computational efficiency, we fix one of the new parameters

• Case I :
$$N_{\rm eff,fs} = 0$$

• Case
$$2: N_{\rm eff, fs} = 2.0328$$

• Case
$$3: N_{\rm eff} = 3.046$$

• Case
$$4 : \Sigma m = 0.11 \text{ eV}$$

Case I:All species interacting

- All neutrino species are interacting
- Corresponds to the case in the Kreisch paper

• Fixed parameters : $N_{\rm eff,fs} = 0$

• Varying parameters : $N_{\rm eff,int}$, $z_{\rm dec}$, Σm

Case I: Triangle Plot

Case I: Summary Table

	Free-str	eaming	Self-interacting (Case 1)					
	P18 +lens +BAO		P18 -	+ lens	+BAO			
			mode 1	mode 2	mode 1	mode 2		
ω_b	0.02219 ± 0.00022	0.02234 ± 0.00019	0.02219 ± 0.00022	0.02226 ± 0.00020	0.02233 ± 0.018	0.02230 ± 0.0017		
ω_{cdm}	0.1177 ± 0.0029	0.1179 ± 0.0028	0.1180 ± 0.0029	0.1136 ± 0.0024	0.1182 ± 0.0029	0.1135 ± 0.0025		
$100 \times \theta_s$	1.04226 ± 0.00051	1.04217 ± 0.00050	1.04225 ± 0.00051	1.04679 ± 0.00055	1.04217 ± 0.00049	1.04678 ± 0.00055		
$\ln(10^{10}A_s)$	3.037 ± 0.017	3.042 ± 0.017	3.035 ± 0.017	2.967 ± 0.014	3.040 ± 0.016	2.967 ± 0.014		
n_s	0.9573 ± 0.0085	0.9631 ± 0.0071	0.9560 ± 0.0085	0.9209 ± 0.0061	0.9613 ± 0.0071	0.9226 ± 0.0055		
z_{reio}	7.57 ± 0.76	7.75 ± 0.73	7.56 ± 0.76	7.45 ± 0.67	7.74 ± 0.72	7.48 ± 0.65		
$\log_{10}(z_{ m dec})$		—	> 5.2 (95%CL)	4.14 ± 0.058	> 5.1 (95%CL)	4.14 ± 0.056		
$N_{ m eff}$	2.82 ± 0.18	2.90 ± 0.17	2.84 ± 0.18	2.55 ± 0.14	2.92 ± 0.17	2.57 ± 0.14		
$\sum m$	< 0.227 (95% CL)	< 0.108 (95% CL)	< 0.225 (95%CL)	< 0.160 (95% CL)	< 0.107 (95% CL)	< 0.108 (95% CL)		
$H_0 \left[\frac{(\mathrm{km/s})}{\mathrm{Mpc}} \right]$	65.8 ± 1.6	67.2 ± 1.1	65.9 ± 1.7	65.7 ± 1.3	67.3 ± 1.1	66.1 ± 1.0		
S_8	0.835 ± 0.013	0.828 ± 0.012	0.835 ± 0.013	0.825 ± 0.013	0.829 ± 0.011	0.821 ± 0.011		
$\ln(E)$	-0.5282×10^{3}	-0.5320×10^{3}	-0.5333×10^{3}	-0.5388×10^3	-0.5370×10^{3}	-0.5418×10^{3}		
$E_{ m int}/E_{ m fs}$		—	6.1×10^{-3}	2.5×10^{-5}	$6.7 imes 10^{-3}$	5.5×10^{-5}		
			Best fit					
$N_{ m eff}$	2.846	2.922	2.859	2.572	2.819	2.519		
$\log_{10}(z_{ m dec})$	_	—	5.953	4.119	5.997	4.126		
$\chi^2_{ m eff}$	1011.08	1016.72	1011.67	1018.35	1016.94	1023.39		
$\Delta\chi^2_{ m eff}$	_	(–)	+0.59	+7.27	+0.22	+6.67		

Self-interacting neutrinos

Case I: Results

• Unlike the Kreisch paper, we don't find increased H_0

- The difference is the data set
 - We used Planck2018 data instead of Planck2015
 - Planck2015 data had large errors for high-l polarization
- What if we remove high-*l* polarization data?

Case I-2: Removing high-*l* polarization

	Free-stream	ning	Self-interacting (Case 1)			
	TT +lowEE +lens +BAO	+R19	${\rm TT}~{\rm +lowEE}~{\rm +lens}~{\rm +BAO}$	+R19		
				mode 1	mode 2	
ω_b	0.02223 ± 0.00023	0.02259 ± 0.00020	0.02219 ± 0.00024	0.02248 ± 0.021	0.02216 ± 0.0021	
ω_{cdm}	0.1199 ± 0.0036	0.1263 ± 0.0031	0.1213 ± 0.0041	0.1286 ± 0.0036	0.1478 ± 0.0057	
$100\times\theta_s$	1.04189 ± 0.00063	1.04204 ± 0.00054	1.04103 ± 0.00056	1.04217 ± 0.00049	1.04617 ± 0.00046	
$\ln(10^{10}A_s)$	3.045 ± 0.018	3.067 ± 0.017	3.041 ± 0.018	3.057 ± 0.018	2.984 ± 0.016	
n_s	0.9668 ± 0.0085	0.9839 ± 0.0065	0.9639 ± 0.0092	0.9760 ± 0.0087	0.9411 ± 0.0067	
z_{reio}	7.74 ± 0.76	8.10 ± 0.78	7.69 ± 0.77	7.95 ± 0.78	7.63 ± 0.87	
$\log_{10}(z_{ m dec})$		_	> 4.9 (95%CL)	$5.15\substack{+0.40\\-0.16}$	3.83 ± 0.03	
$N_{ m eff}$	3.04 ± 0.22	3.50 ± 0.18	3.13 ± 0.25	3.63 ± 0.20	4.53 ± 0.32	
$\sum m$	< 0.120 (05%CL)	< 0.144 (05%CL)	< 0.151 (05%CL)	< 0.172 (05%CL)	0.25 ± 0.12	
$H_0 \left[\frac{(\mathrm{km/s})}{\mathrm{Mpc}} \right]$	67.8 ± 1.4	71.0 ± 1.0	68.3 ± 1.5	71.5 ± 1.1	74.5 ± 1.2	
S_8	0.828 ± 0.014	0.829 ± 0.014	0.832 ± 0.015	0.836 ± 0.014	0.816 ± 0.015	
$\ln(E)$	-0.3419×10^{3}	-0.3468×10^{3}	-0.3462×10^3	-0.3504×10^{3}	-0.3550×10^{3}	
$E_{ m int}/E_{ m fs}$	_	_	1.4×10^{-2}	2.7×10^{-2}	$2.7 imes 10^{-4}$	
	Best fit					
$N_{ m eff}$	2.971	3.494	3.123	3.591	4.653	
$\log_{10}(z_{ m dec})$	—	5	5.224	4.970	3.8208	
P18 highTT	205.34	211.24	204.95	208.11	216.01	
P18 lowTT	23.58	21.56	23.95	22.74	24.44	
P18 highEE	_		-			
P18 lowEE	395.77	396.28	395.75	396.15	395.87	
P18 lensing	8.81	9.46	8.88	9.36	11.20	
P18 total	633.5	638.5	633.5	636.4	647.5	
BAO	5.40	6.54	5.25	6.53	4.96	
R19	_	3.75	-	2.97	0.33	
$\chi^2_{ m eff}$	638.89	648.83	638.79	645.85	652.81	
$\Delta\chi^2_{ m eff}$	—		-0.10	-2.98	+3.98	

- Now we find increased H_0
- Polarization data constrain N_{eff} tightly
- With polarization data, we find self-interacting neutrino is not a solution to the Hubble tension

Case 4: Fixed Σm

- We fix total Σm while varying both $N_{\rm eff,int}$ and $N_{\rm eff,fs}$
- Fixed parameters : $\Sigma m = 0.11 \text{ eV}$

- Varying parameters : $N_{eff,int}$, $N_{eff,fs}$, Z_{dec}
- We also consider fluid-like case ($z_{dec} = 0$)

Case 4: Triangle Plot

Case 4: Summary Table

	Free-streaming			Self-interacting (Case 4)			Self-interacting (fluid-like)	
	P18 + lens	+BAO	+R19	P18 + lens	+BAO	+R19	P18 +lens +BAO	+R19
ω_b	0.02217 ± 0.00022	0.02239 ± 0.00019	0.02276 ± 0.00017	0.02221 ± 0.00022	$0.02242\substack{+0.00018\\-0.00020}$	$0.02281\substack{+0.00017\\-0.00018}$	0.02248 ± 0.00020	0.02286 ± 0.00017
ω_{cdm}	0.1178 ± 0.0028	0.1186 ± 0.0029	0.1240 ± 0.0026	$0.1183 \substack{+0.0027 \\ -0.0030}$	0.1191 ± 0.0028	$0.1247 \substack{+0.0026 \\ -0.0027}$	0.1196 ± 0.0029	0.1249 ± 0.0027
100 × θ_s	1.04226 ± 0.00054	1.04207 ± 0.00052	1.04127 ± 0.00046	$1.04244 \substack{+0.00054 \\ -0.00066}$	${}^{1.04238}_{-0.00075}^{+0.00055}$	$1.04198 \substack{+0.00068 \\ -0.00094}$	1.04269 ± 0.00066	$1.04226 \substack{+0.00066 \\ -0.00075}$
$\ln(10^{10}A_s)$	3.038 ± 0.017	3.050 ± 0.017	3.071 ± 0.017	$3.036\substack{+0.017 \\ -0.018}$	$3.044\substack{+0.018\\-0.017}$	$3.058 \substack{+0.020 \\ -0.019}$	3.040 ± 0.018	3.054 ± 0.019
n_s	0.9567 ± 0.0085	0.9654 ± 0.0070	0.9810 ± 0.0059	$0.9561 \substack{+0.0086 \\ -0.0082}$	$0.9633 \substack{+0.0076 \\ -0.0071}$	$0.9757 \substack{+0.0073 \\ -0.0070}$	0.9622 ± 0.0073	0.9745 ± 0.0068
z_{reio}	7.63 ± 0.75	8.06 ± 0.73	8.45 ± 0.76	$7.69\substack{+0.72 \\ -0.74}$	$8.07\substack{+0.70 \\ -0.72}$	8.46 ± 0.75	8.13 ± 0.75	8.53 ± 0.77
$N_{ m eff}$	2.81 ± 0.18	2.95 ± 0.17	3.35 ± 0.15	$2.85^{+0.18}_{-0.19}$	$2.98 \substack{+0.16 \\ -0.17}$	$3.37^{+0.14}_{-0.15}$	3.00 ± 0.17	3.37 ± 0.15
$N_{\rm eff,int}$	_	—	_	< 0.74 (95% CL)	< 0.86 (95% CL)	$0.44 \substack{+0.14 \\ -0.37}$	< 0.51 (95% CL)	$0.35\substack{+0.15 \\ -0.22}$
$H_0 \left[\frac{(\text{km/s})}{\text{Mpc}} \right]$	65.4 ± 1.4	67.0 ± 1.2	69.8 ± 1.0	65.7 + 1.1 - 1.5	$67.2^{+1.1}_{-1.2}$	70.1 + 0.0 - 1.0	67.5 ± 1.2	70.3 ± 1.0
S8	0.835 ± 0.014	0.823 ± 0.012	0.823 ± 0.012	0.833 ± 0.014	0.821 ± 0.012	0.818 ± 0.013	0.818 ± 0.013	0.815 ± 0.013
$\ln(E)$	-0.5275×10^{3}	-0.5322×10^3	-0.5399×10^3	-0.5273×10^{3}	-0.5317×10^3	-0.5385×10^3	-0.5325×10^{3}	-0.5391×10^{3}
$E_{\mathrm{int}}/E_{\mathrm{fs}}$	—	_	—	1.18	1.57	3.94	0.71	2.19
			Best fit (c	orresponding to low	$z_{ m dec}$ mode)			
N_{eff}	2.798	2.937	3.321	2.807	2.924	3.376	2.982	3.365
$N_{\rm eff,int}$	_	_	—	0.030	0.193	0.564	0.168	0.312
$\log_{10}(z_{\rm dec})$	_	—	_	3.038	3.077	3.078	_	_
$\chi^2_{ m eff}$	1012.85	1021.61	1036.65	1012.79	1021.01	1032.73	1021.22	1034.32
$\Delta \chi^2_{ m eff}$	_		—	-0.06	-0.60	-3.91	-0.39	-2.32
	Intermediate $z_{ m dec}$ mode best fit							
N_{eff}	—	_	—	2.768	2.930	3.463	—	_
$N_{\rm eff,int}$	_		—	0.002	0.297	0.448	_	
$\log_{10}(z_{\rm dec})$	—	—	—	3.849	4.004	3.773	_	_
$\chi^2_{ m eff}$	—			1012.93	1021.46	1034.96	—	
$\Delta\chi^2_{ m eff}$	_	—		+0.07	-0.15	-1.68		_
	High $z_{ m dec}$ mode best fit							
$N_{\rm eff}$			_	2.954	2.924	3.321	_	
$N_{ m eff,int}$	_	_	_	0.012	0.028	0.305	_	—
$\log_{10}(z_{\rm dec})$			_	5.542	5.860	5.180	_	
$\chi^2_{ m eff}$	_	_	_	1013.07	1021.74	1037.36	_	_
$\Delta \chi^2_{ m eff}$		_	_	+0.22	+0.13	+0.71	_	_

Case 4: Results

- We find an upper bound on $N_{\rm eff,int} < 0.86$ (95% C.L.) for the decoupling case
- For fluid-like case, we find N_{eff,int} < 0.51 (95% C.L.)

CONCLUSIONS

Conclusions

 Self-interacting neutrinos do not help to solve the Hubble tension with new data

• We put constraints on self-interacting radiation (on z_{dec} , $N_{eff,int}$)

Future Works

- We are working on the recoupling case
- For the recoupling case, the Majoron can be produced in later Universe

 Recoupling width is much larger compared to the decoupling case

THANKYOU

Decoupling Time

• Decoupling happens at $\Gamma \sim H$

• With
$$\Gamma \sim G_{\nu}^2 T^5$$
 and $H \sim \frac{T^2}{m_{pl}}$,
we get $T_d \sim \left(G_{\nu}^2 m_{pl}\right)^{-1/3}$

The Exact Interaction Rate

For $\nu_i(p_1) + \nu_j(p_2) \to \nu_k(p_3) + \nu_l(p_4)$

$$\Gamma_{\nu}(E_{1}) = \frac{1}{2E_{1}} \int d\Pi_{2} d\Pi_{3} d\Pi_{4} f_{\nu}(E_{2}) (1 - f_{\nu}(E_{3})) (1 - f_{\nu}(E_{4}) |\mathcal{M}|^{2} (2\pi)^{4} \delta^{(4)}(p_{1} + p_{2} - p_{3} - p_{4})$$

$$|\mathcal{M}_{\nu\nu\to\nu\nu}|^{2} = \frac{1}{2} |\mathcal{M}_{\nu_{i}\nu_{i}\to\nu_{i}\nu_{i}}|^{2} + \frac{1}{2} \times 2 |\mathcal{M}_{\nu_{i}\nu_{i}\to\nu_{j}\nu_{j}}|^{2} + 2 |\mathcal{M}_{\nu_{i}\nu_{j}\to\nu_{i}\nu_{j}}|^{2}$$

For identical outgoing particles For different species

$$\begin{aligned} |\mathcal{M}_{\nu_{i}\nu_{i}\to\nu_{i}\nu_{i}}|^{2} &= G_{\nu}^{2}(s^{2}+st+t^{2}) & \Gamma_{\nu}(E_{1}) &= \int \frac{d^{3}p_{2}}{(2\pi)^{3}}g_{\nu}f_{\nu}(E_{2})\frac{s}{2E_{1}E_{2}}\sigma_{\nu\nu\to\nu\nu} \\ |\mathcal{M}_{\nu_{i}\nu_{j}\to\nu_{j}\nu_{j}}|^{2} &= G_{\nu}^{2}s^{2} & (i\neq j) & = \frac{35\pi}{1728}G_{\nu}^{2}E_{1}T_{\nu}^{4} \end{aligned}$$

Case I:With RI9

	Free	Self-interacting (Case 1)	
	P18 +lens +BAO	P18 + lens + BAO + R19	P18 + lens + BAO + R19
ω_b	0.02234 ± 0.00019	0.02270 ± 0.00016	0.2268 ± 0.0016
ω_{cdm}	0.1179 ± 0.0028	0.1231 ± 0.0026	0.1235 ± 0.0027
$100 \times \theta_s$	1.04217 ± 0.00050	1.04139 ± 0.00043	1.04139 ± 0.00045
$\ln(10^{10}A_s)$	3.042 ± 0.017	3.062 ± 0.016	3.058 ± 0.016
n_s	0.9631 ± 0.0071	0.9780 ± 0.0058	0.9751 ± 0.0066
z_{reio}	7.75 ± 0.73	8.10 ± 0.74	8.07 ± 0.74
$\log_{10}(z_{ m dec})$		—	> 5.3 (68% CL)
$N_{ m eff}$	2.90 ± 0.17	3.28 ± 0.14	3.30 ± 0.15
$\sum m$	< 0.108 (95%CL)	$< 0.0965 \ (95\% CL)$	< 0.102 (95% CL)
$H_0 \left[\frac{(\mathrm{km/s})}{\mathrm{Mpc}} \right]$	67.2 ± 1.1	69.93 ± 0.92	70.05 ± 0.94
S_8	0.828 ± 0.012	0.828 ± 0.012	0.829 ± 0.012
$\ln(E)$	-0.5320×10^{3}	$-0.5393 imes 10^3$	$-0.5439 imes 10^3$
$E_{ m int}/E_{ m fs}$		—	1.0×10^{-2}
		Best fit	
$N_{ m eff}$	2.922	3.209	3.254
$\log_{10}(z_{ m dec})$	—	—	5.571
P18 highTTTEEE	583.23	588.54	589.17
P18 lowTT	23.45	21.95	22.17
P18 lowEE	396.01	396.43	396.26
P18 lensing	8.73	9.08	9.08
P18 total	1011.4	1016.0	1016.7
BAO	5.30	5.69	5.78
R19	_	9.14	8.17
$\chi^2_{ m eff}$	1016.72	1030.83	1030.64
$\Delta\chi^2_{ m eff}$	_	_	-0.19

- mode 2 is ruled out
- We have the lower bound on $z_{dec} > 10^{5.3}$ (68% C.L.)

Case 2: 2 v_{fs} + 1 v_{int}

- We leave two species of neutrino freestreaming, but one of the species is selfinteracting
- Fixed parameters : $N_{\rm eff,fs} = 2.0328$

• Varying parameters : $N_{\rm eff,int}$, $z_{\rm dec}$, Σm

Case 2: Triangle Plot

Case 2: Summary Table

	Free-streaming			Self-interacting (Case 2)			Self-interacting (fluid-like)	
	P18 +lens	+BAO	+R19	P18 +lens	+BAO	+R19	P18 +lens +BAO	+R19
ω_b	0.02216 ± 0.00023	0.02233 ± 0.00019	0.02269 ± 0.00016	0.02215 ± 0.00023	0.02232 ± 0.00019	0.02268 ± 0.00016	0.02235 ± 0.00021	0.02281 ± 0.00018
$^{\omega}cdm$	0.1177 ± 0.0029	0.1178 ± 0.0029	0.1231 ± 0.0026	$0.1175 \substack{+0.0029 \\ -0.0031}$	0.1177 ± 0.0029	$0.1232 \substack{+0.0028 \\ -0.0027}$	0.1162 ± 0.0030	$0.1224 \substack{+0.0025 \\ -0.0029}$
$100 \times \theta_{\mathcal{S}}$	1.04229 ± 0.00051	1.04219 ± 0.00050	1.04140 ± 0.00044	$1.04257 \substack{+0.00056 \\ -0.00082}$	$1.04254 \substack{+0.00056 \\ -0.00093}$	$1.04173 \substack{+0.00032 \\ -0.00088}$	1.04510 ± 0.00032	1.04537 ± 0.00030
$\ln(10^{10}A_s)$	3.036 ± 0.017	3.042 ± 0.017	3.062 ± 0.016	$3.031 \substack{+0.019 \\ -0.018}$	3.035 ± 0.018	$3.054 \substack{+0.020 \\ -0.018}$	2.992 ± 0.015	2.994 ± 0.030
n_s	0.9563 ± 0.0087	0.9629 ± 0.0071	0.9781 ± 0.0059	$0.9530 \substack{+0.0092 \\ -0.0095}$	$0.9588 \substack{+0.0084 \\ -0.0085}$	$0.9735 \substack{+0.0091 \\ -0.0067}$	0.9389 ± 0.0044	0.9465 ± 0.0040
z_{reio}	7.58 ± 0.77	7.78 ± 0.74	8.12 ± 0.74	7.56 ± 0.75	7.73 ± 0.72	$8.06\substack{+0.72 \\ -0.74}$	7.81 ± 0.73	8.24 ± 0.75
$N_{ m eff}$	2.83 ± 0.18	2.92 ± 0.17	3.30 ± 0.15	$2.83\substack{+0.18 \\ -0.19}$	$2.91\substack{+0.18 \\ -0.17}$	$3.30\substack{+0.15 \\ -0.16}$	2.76 ± 0.17	3.16 ± 0.14
$\sum m$	< 0.301 (95%CL)	< 0.108 (95% CL)	< 0.095 (95% CL)	< 0.312 (95%CL)	< 0.110 (95% CL)	< 0.097 (95% CL)	< 0.122 (95%CL)	< 0.110 (95% CL)
$H_0 \left \frac{(\text{km/s})}{\text{Mpc}} \right $	65.4 ± 1.7	67.1 ± 1.1	69.9 ± 0.9	$65.4^{\pm1.9}_{-1.7}$	67.1 ± 1.2	70.0 ± 1.0	66.7 ± 1.2	69.9 ± 1.0
S ₈	0.833 ± 0.014	0.827 ± 0.012	0.828 ± 0.012	$0.832 \substack{+0.015 \\ -0.014}$	0.827 ± 0.012	0.828 ± 0.012	0.804 ± 0.012	0.796 ± 0.011
$\ln(E)$	-0.5280×10^{3}	-0.5322×10^{3}	-0.5394×10^{3}	-0.5324×10^{3}	-0.5323×10^{3}	-0.5436×10^{3}	-0.5365×10^{3}	-0.5444×10^3
$E_{\mathrm{int}}/E_{\mathrm{fs}}$	_	—		1.3×10^{-2}	0.86	1.6×10^{-2}	1.4×10^{-2}	6.8×10^{-3}
				Best fit				
$N_{\rm eff,int}$	—	_	_	0.834	0.787	1.239	0.646	1.153
$\log_{10} z_{\rm dec}$	—	—		5.442	4.085	5.163	-	-
$\chi^2_{\rm eff}$	1011.10	1016.79	1030.98	1011.24	1016.62	1030.85	1025.76	1041.15
$\Delta \chi^2_{ m eff}$		_		+0.14	-0.16	-0.12	+8.97	+10.17
Second mode best fit								
$N_{\rm eff,int}$	—	—	—	0.687	0.822	1.127	—	
$\log_{10} z_{\rm dec}$	_		—	4.118	5.456	4.002	—	
$\chi^2_{ m eff}$	—	—		1011.43	1016.71	1031.39	—	
$\Delta\chi^2_{ m eff}$	_	—	_	+0.33	-0.08	+0.41	—	

Case 2: Results

• We find a room for self-interacting species

• This does not change other cosmological variables such as H_0 much

 CMB does not prefer the interacting neutrino over free-streaming case

Case 3: Fixed N_{eff}

• We fix total $N_{\rm eff}$ while varying the fraction of interacting species

- Fixed parameters : $N_{\rm eff} = 3.046$
- Varying parameters : $N_{\rm eff,int}$, $z_{\rm dec}$, Σm
- We also consider fluid-like case ($z_{dec} = 0$)

Case 3: Triangle Plot and Summary Table

	Free streaming	Solf interacting (Case 3)	Solf interacting (fluid like)	
	$P18 \pm lens \pm BAO$	P18 + lens + BAO	P18 + lens + BAO	
(1)1	0.02242 ± 0.00014	0.02243 ± 0.00014	0.02247 ± 0.00015	
<i>∞</i> ₈	0.1196 ± 0.0010	0.1197 ± 0.0010	0.1199 ± 0.0010	
$200 \times \theta_{-}$	1.04191 ± 0.00032	$1.04220^{+0.00033}$	$1.04261^{+0.00050}$	
$\ln(10^{10} A)$	3.043 ± 0.015	1.01220 - 0.00066 3.042 ± 0.016	3.036 ± 0.017	
$m(10 A_s)$	0.0660 ± 0.013	0.0643 ± 0.00055	3.030 ± 0.017	
11 _S	0.3009 ± 0.0038	0.9043 - 0.0041	0.3021 ± 0.0030	
Zreio	$(.82 \pm 0.73)$	1.82 ± 0.72	$(.87 \pm 0.73)$	
$N_{ m eff,int}$	—	$< 0.79 \ (68\% CL)$	$< 0.28 \ (68\% CL)$	
$\sum m$	< 0.115 (95%CL)	< 0.115 (95%CL)	< 0.118 (95%CL)	
$H_0 \left[\frac{(\mathrm{km/s})}{\mathrm{Mpc}} \right]$	67.8 ± 0.5	$67.9^{+0.6}_{-0.5}$	68.0 ± 0.6	
S_8	0.829 ± 0.012	0.829 ± 0.013	0.823 ± 0.013	
$\ln(E)$	-0.5306×10^{3}	-0.5309×10^{3}	-0.5320×10^{3}	
$E_{ m int}/E_{ m fs}$		0.74	0.24	
		Best fit		
$N_{ m eff,int}$	_	0.199	0.139	
$\log_{10}(z_{ m dec})$	_	3.084		
$\chi^2_{ m eff}$	1017.32	1016.65	1017.05	
$\Delta\chi^2_{ m eff}$	—	-0.67	-0.28	
	Н	igh $z_{ m dec}$ mode best fit		
$N_{ m eff,int}$	_	0.020	_	
$\log_{10}(z_{ m dec})$	_	5.077	—	
$\chi^2_{ m eff}$	_	1017.47	_	
$\Delta\chi^2_{ m eff}$	—	+0.15	—	

Case 3: Results

- We find an upper bound on $N_{\rm eff,int} < 0.79$ (68% C.L.) for the decoupling case
- For fluid-like case, we find N_{eff,int} < 0.28 (68% C.L.)