Crunching Naturalness

Michael Geller, TAU

With Csaba Csaki, Raffaele Tito D'Agnolo, Ameen Ismail

2007.14396 (PRL 2021)

Naturalness Problem

- Naturalness potential problem in the UV completions of the SM.
- Direct UV completions of the SM will only be compatible with observations if unnatural connections between different parameters exist.
- The UV completions are necessary GUT, Planck.
- This property gets worse as the departure from SM occurs at higher energy scales.

Natural Models

 Models where the Higgs mass is predicted to be small at the ground state of the theory - SUSY, Composite Higgs.
 Ground state naturalness

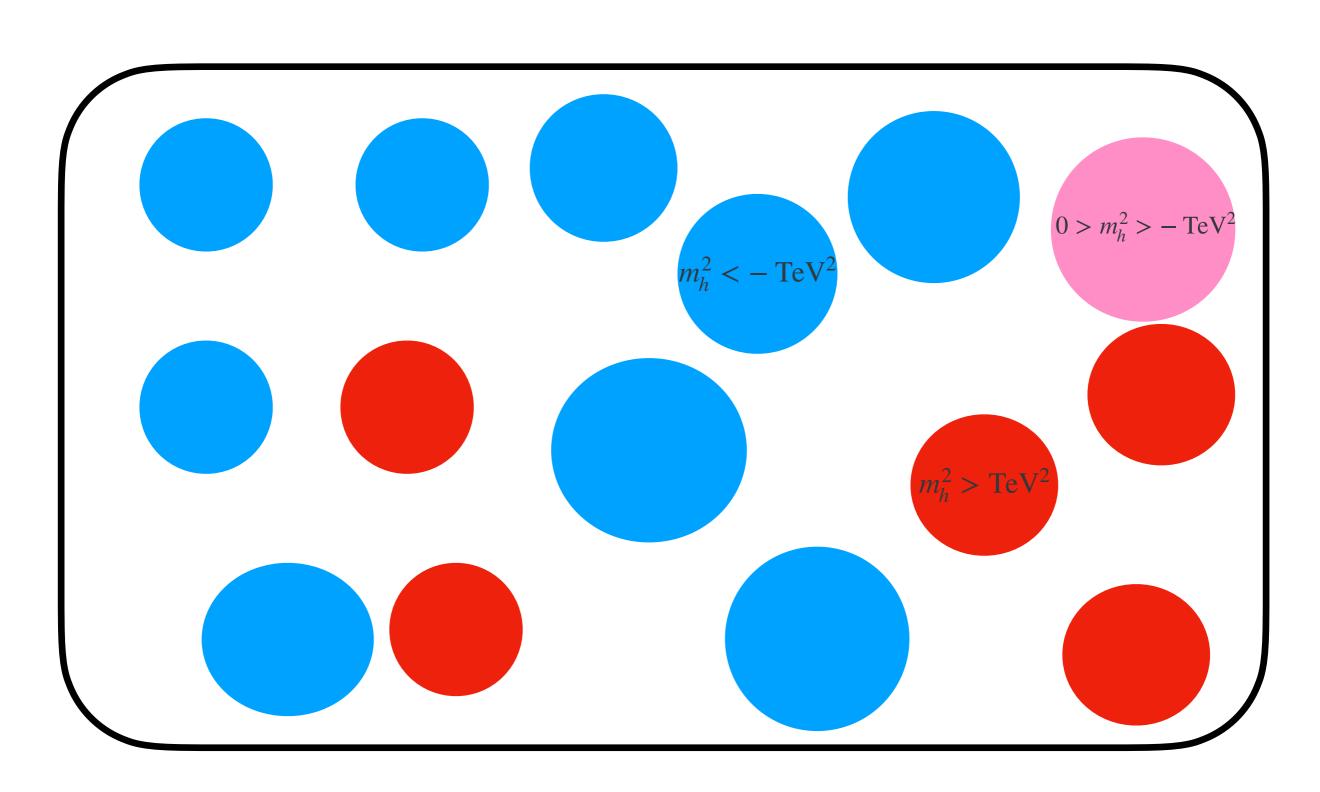
 Models where the Higgs mass is large at the ground state, but small at the current metastable state -Anthropics, relaxion. Metastable naturalness

Current Status

No top partners at the LHC - in tension with ground state naturalness

Anthropics - no bulletproof argument for the Higgs (unlike the CC)

- Many new ideas for metastable naturalness:
 - Relaxion (Graham, Kaplan, Rajendran 15')
 - Inflating to the Weak Scale (Hochberg, Geller, Kuflik 19')
 - Self Organized Localization (Giudice, McCullough, You 21', see also Gian's talk!)
 - Selfish Higgs (Giudice, Kehagias, Riotto, 19')


Our Idea

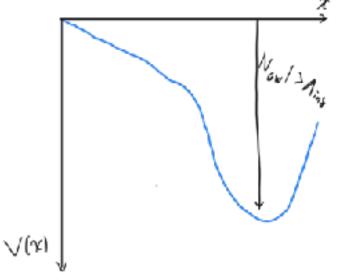
The Higgs mass is multivalued in the landscape

 Having a Higgs mass above EW will destabilize and destroy the local patch very early on.

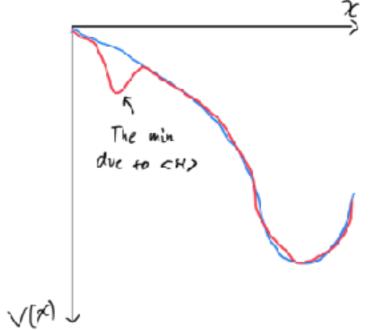
 The universe is expanding (and not crunching) only when the Higgs mass is EW or less

Early Universe(s) History

Early Universe(s) History


At BBN

$$0 > m_h^2 > - \text{TeV}^2$$


Our Observable Universe

The Mechanism

• The Higgs is coupled to a CFT whose "techni-quarks" carry SU(2) charges. The dilaton has a deep and negative minimum.

- If the Higgs VEV is zero or too large, this is the only minimum.
- If the Higgs VEV is EW or less there is a second minimum very close to the origin

Reminder: Goldberger-Wise

GW scalar in the bulk

$$z = R$$
 $z = R'$

$$ds^2 = \frac{R^2}{z^2} \left(dx^\mu dx_\mu - dz^2 \right)$$

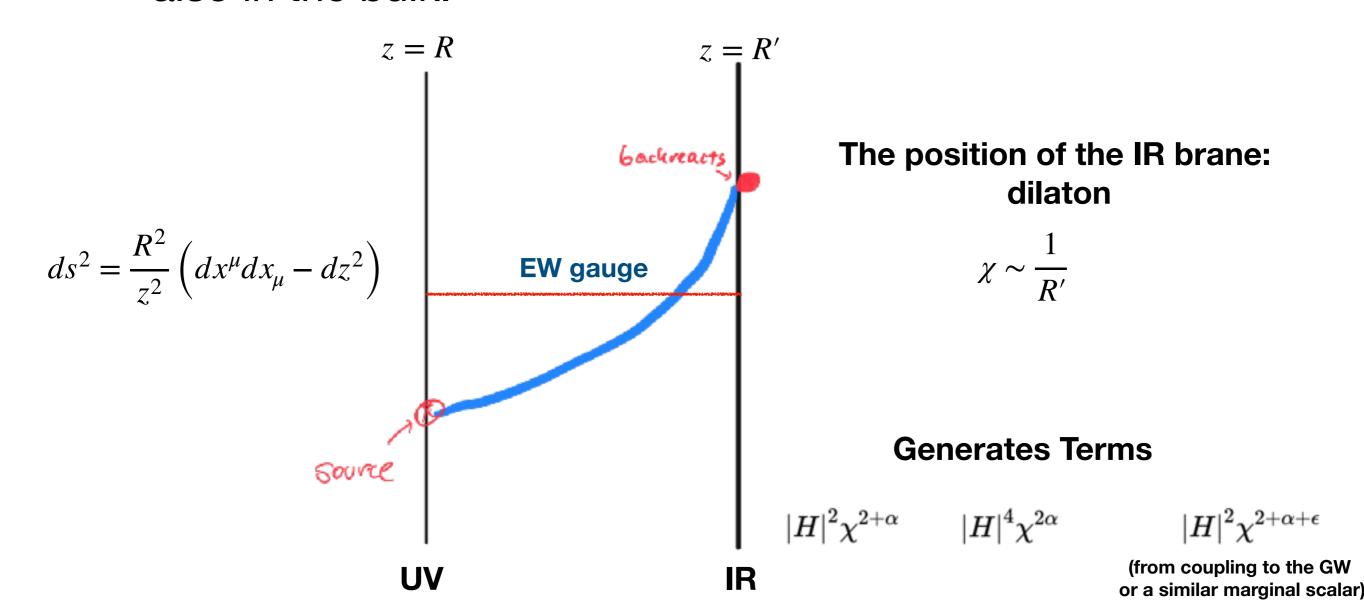
$$k = 1/R$$
 (AdS radius)

$$arphi_{GW}$$

$$\frac{m_{\varphi}^2}{k^2} = \delta$$

$$\chi \sim \frac{1}{R'}$$

Integrating out the bulk we get terms:


$$\chi^4, \chi^{4+\delta}$$

UV

IR

The CFT/RS model

 In our RS model the Higgs and the EW gauge bosons are also in the bulk.

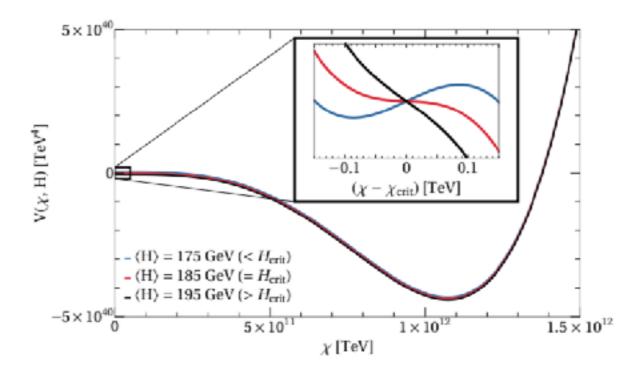
The CFT interpretation

- A CFT which is charged under SU(2). Turn on two operators:
 - singlet \mathcal{O}_{ϵ} of dimension $4-\epsilon$
 - doublet \mathcal{O}_H of dimension $3 + \alpha/2$.
- We couple the doublet operator to the Higgs in the UV:

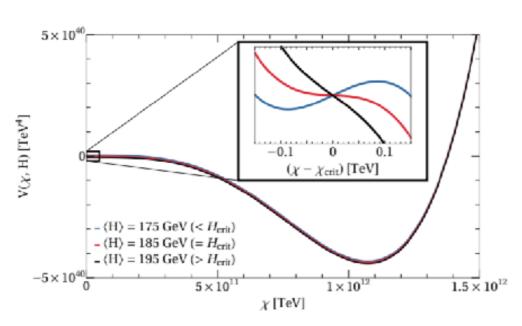
$$\tilde{\lambda_H} \mathcal{O}_H^\dagger H + \tilde{\lambda_\epsilon} \mathcal{O}_\epsilon$$

In the IR, we get the effective potential:

$$egin{aligned} V_{eff} &= a_0 \chi^4 + a_1 ilde{\lambda}_H^2 H^2 \chi^{2+lpha} + a_2 ilde{\lambda}_H^4 H^4 \chi^{2lpha} \ &+ a_3 ilde{\lambda}_\epsilon \chi^{4+\epsilon} + a_4 ilde{\lambda}_\epsilon ilde{\lambda}_H^2 H^2 \chi^{2+lpha+\epsilon} + \dots \end{aligned}$$


The potential

The full potential:


$$V(\chi,H) = V_{\mathrm{GW}}(\chi) + V_{H\chi}(\chi,H) + V_H(H)$$

$$V_{
m GW}(\chi) = -\lambda \chi^4 + \lambda_{
m GW} rac{\chi^{4+\delta}}{k^\delta} \qquad \qquad V_{H\chi}(\chi,H) = \lambda_2 |H|^2 rac{\chi^{2+lpha}}{k^lpha} - \lambda_{H\epsilon} |H|^2 rac{\chi^{2+lpha+\epsilon}}{k^{lpha+\epsilon}} - \lambda_4 |H|^4 rac{\chi^{2lpha}}{k^{2lpha}}$$

There is a maximal value of h for which a minimum exists

The potential

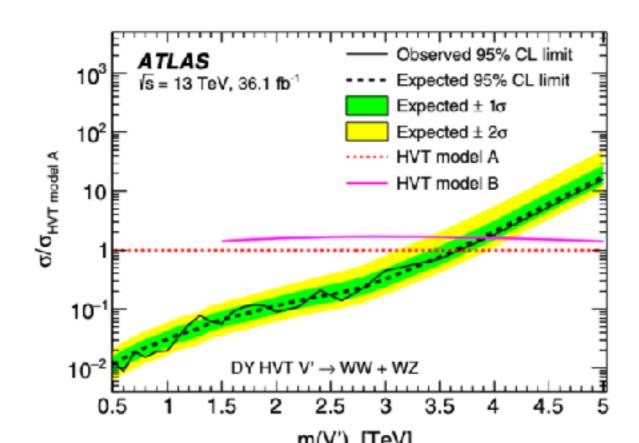
$$V_{H\chi}(\chi,H) = \lambda_2 |H|^2 rac{\chi^{2+lpha}}{k^lpha} - \lambda_{H\epsilon} |H|^2 rac{\chi^{2+lpha+\epsilon}}{k^{lpha+\epsilon}} - \lambda_4 |H|^4 rac{\chi^{2lpha}}{k^{2lpha}}$$

The critical value:

$$h_{crit} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{\frac{1 - \alpha/2}{\epsilon}} \sqrt{\frac{\lambda_2}{\lambda_4} \frac{\epsilon(2 + \alpha)}{2\alpha(2 - \alpha + \epsilon)}} \sim k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \right)^{1/\epsilon}$$

- The inflection point $\chi_{\text{crit}} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 \alpha^2}{(2 + \epsilon)^2 \alpha^2} \right)^{1/\epsilon}$
- The minimum $\chi_{\min} \simeq \left(\frac{h^2}{k^{lpha}} \frac{2 lpha \lambda_4}{(2+lpha) \lambda_2} \right)^{\frac{1}{2-lpha}}$

Generating the hierarchy


The critical Higgs value:

$$h_{crit} = k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \frac{4 - \alpha^2}{(2 + \epsilon)^2 - \alpha^2} \right)^{\frac{1 - \alpha/2}{\epsilon}} \sqrt{\frac{\lambda_2}{\lambda_4} \frac{\epsilon(2 + \alpha)}{2\alpha(2 - \alpha + \epsilon)}} \sim k \left(\frac{\lambda_2}{\lambda_{H\epsilon}} \right)^{1/\epsilon}$$

- We want to generate a large hierarchy. We can take small ϵ and $\lambda_2 \lesssim \lambda_{H\epsilon}$.
- Generating the hierarchy with a marginal dimension reminiscent of Goldberger-Wise.

The Little hierarchy

- Since SU(2) is in the bulk we have bounds from ATLAS and CMS at the 3-4 TeV range.
- Their production is due to the mixing of compositeelementary, and so is similar in our case to standard bulk-RS.

The little hierarchy

This means we need a ratio:

$$rac{h}{\chi_{
m min}} \simeq rac{h_{
m crit}}{\chi_{
m min}} \lesssim 0.1$$

Small couplings!

$$V_{H\chi}(\chi,H) = \lambda_2 |H|^2 rac{\chi^{2+lpha}}{k^lpha} - \lambda_{H\epsilon} |H|^2 rac{\chi^{2+lpha+\epsilon}}{k^{lpha+\epsilon}} - \lambda_4 |H|^4 rac{\chi^{2lpha}}{k^{2lpha}}$$

$$\chi_{\min} \simeq \left(rac{h^2}{k^{lpha}} rac{2lpha \lambda_4}{(2+lpha) \lambda_2}
ight)^{rac{1}{2-lpha}} \qquad \qquad \lambda_2, \lambda_{H\epsilon} < 10^{-2} lpha \lambda_4 \ \qquad \qquad ext{and also} \ \lambda, \lambda_{\mathrm{GW}} \lesssim 10^{-5}$$

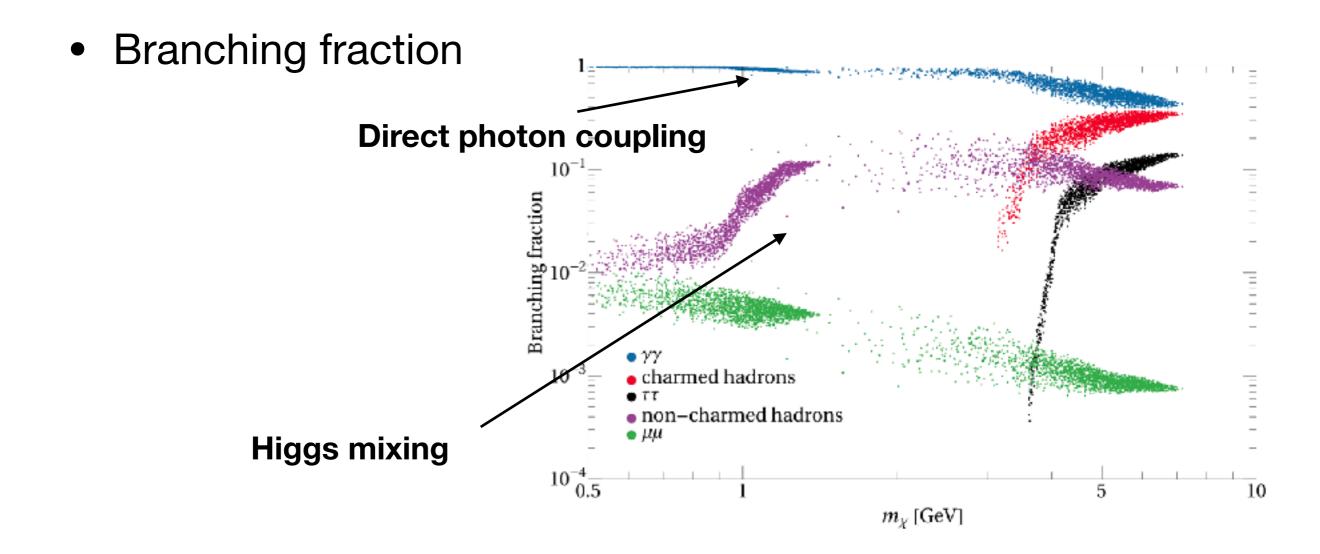
We will return to this point

The light dilaton

 The little hierarchy results in a light dilaton (stabilized by the smaller Higgs VEV)

$$m_\chi \simeq m_h \sqrt{rac{h}{\chi_{
m min}} rac{\pi \sin heta}{\sqrt{6}N} - rac{8\pi^2(\lambda-\lambda_{
m GW})}{N^2} rac{\chi^2_{
m min}}{m_h^2}}$$

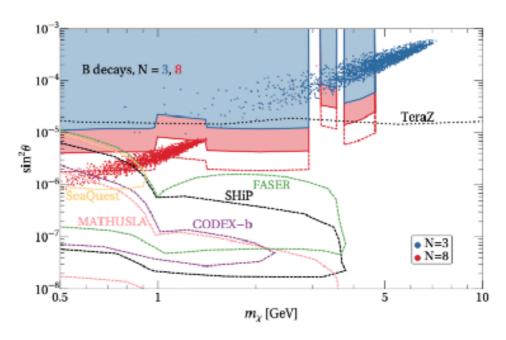
$$\sin heta \sim rac{(\lambda_2 - \lambda_{H\epsilon})}{N} rac{h \chi_{\min}}{m_h^2}$$

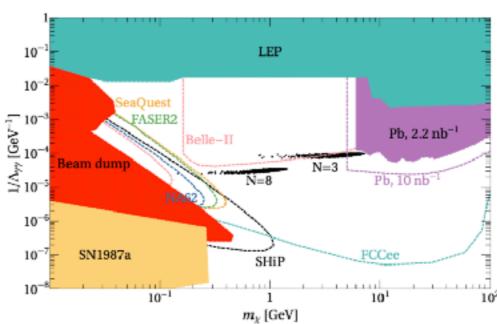

$$\lambda_2, \lambda_{H\epsilon} < \!\! 10^{-2} lpha \lambda_4$$

$$\lambda, \lambda_{\mathrm{GW}} \lesssim 10^{-5}$$

 Smoking gun prediction - light dilaton mixing with the Higgs.

Dilaton properties


- Light Dilaton less that 10 GeV
- Couplings Higgs mixing, direct photon coupling



Pheno

Constraints and projections due to Higgs mixing:

Photon coupling

Pheno (intermediate) summary

 At a few TeV - heavy KK modes of gauge bosons and Higgs.

 At below 5 GeV - light dilaton which is produced and decays through mostly Higgs mixing and direct photons couplings.

Cosmological Dynamics

For large Higgs VEV -

- For zero Higgs VEV can get stuck in the hot phase and never transition.
- Need to have a limit on the supercooling of the CFT.

Breaking the supercooling

 Big departure from AdS in the IR - the BH phase disappears.

 CFT is explicitly broken - the unbroken phase is no longer a solution.

Nucleation temperature - same order as the scale of CFT breaking.

Breaking the supercooling

- Possible solution: have QCD in the bulk. Use the contribution of QCD confinement to the potential to break CFT.
- Running coupling: $\frac{1}{g^2(Q,\chi)} = \frac{\log\frac{\kappa}{\chi}}{kg_5^2} \frac{b_{\rm UV}}{8\pi^2}\log\frac{k}{Q} \frac{b_{\rm IR}}{8\pi^2}\log\frac{\chi}{Q} + \tau$

$$egin{aligned} ilde{\Lambda}(\chi) = & \left(k^{b_{ ext{UV}}} \chi^{b_{ ext{IR}}} e^{-8\pi^2 au} \Big(rac{\chi}{k}\Big)^{-b_{ ext{CFT}}} \Big)^{rac{1}{b_{ ext{UV}}+b_{ ext{IR}}}} \ & = \Lambda_0 igg(rac{\chi}{\chi_{ ext{min}}}igg)^n \end{aligned}$$

CFT breaking scale

$$\chi_* \sim 10-100~{
m MeV}$$

The CC

• As long as any $H_{\Lambda} < \chi_*$ within the landscape - any surviving patch with any CC will have EW Higgs VEV.

 This implies a bound on the possible values of the CC cutoff for the Higgs sector.

1. For QCD -
$$\Lambda < \sqrt{\chi_* M_{\rm Pl}} \lesssim 10^5 {\rm ~TeV}$$

2. Other solutions may reach $\Lambda < \sqrt{\langle h \rangle} \, M_{\rm Pl} \lesssim 10^7 \, \, {\rm TeV}$

Tuning - the 5d cutoff

- The little hierarchy: $\lambda, \lambda_{\rm GW} \lesssim 10^{-5}$
- What does this say about tuning? 5d contributions: $\lambda \sim \frac{1}{16\pi^2} \frac{\Lambda_5^4}{\chi^4}$. For natural couplings $\Lambda_5 \lesssim \chi$.
- This can be thought of as SUSY with Λ_5 as the SUSY breaking scale:
 - Not Excluded!
 - Changes the pheno Split SUSY (only electroweakinos), where the KK spectrum is supersymmetric.

Pheno - summary

- Light dilaton in the IR.
- EW KK spectrum maybe supersymmetric (but high scale SUSY for everything else)
- Maybe QCD in the bulk KK glues.
- Cosmology CFT phase transition at below 10 GeV temperatures that involves EW physics - interesting for baryogenesis and GW.

What next?

• A full supersymmetric model.

Study of the UV pheno.

 Study of the cosmology and predictions for baryogenesis and GW.

Summary

- What did we gain?
 - New solution to the hierarchy problem potentially up to 10^7 TeV cutoff.
 - Using landscape but conceptually different from standard anthropics.
 - New predictions for natural models new physics (composite states) but no top partners!