Conveners
Instrumentation
- Michael Tytgat (Ghent University (BE))
Instrumentation
- Simone Donati (University of Pisa and Istituto Nazionale di Fisica Nucleare)
- Simone Donati (Universita di Pisa & INFN (IT))
Instrumentation
- Simone Donati (University of Pisa and Istituto Nazionale di Fisica Nucleare)
- Simone Donati (Universita di Pisa & INFN (IT))
The use of conventional imaging techniques becomes problematic when faced with challenging logistics and confined environments. In particular, such scenarios are not unusual in the field of archaeological and mining explorations as well as for nuclear waste characterization. For these applications, even the use of muography is complicated since the detectors have to be deployed in difficult...
Muography instrumentation presents a wide range of practical challenges, since the implementation environment differs from the high energy physics laboratory conditions. The presentation will briefly overview the pros and cons of existing technologies, and gaseous detectors in particular. The practical challenges are partially environmental, such as thermal cycling or high humidity, partially...
The rapidly evolving field of Muography opens an outstanding way to reveal density anomalies inside hill-sized objects. The cosmic muons lose thei energy gradually and penetrate hundreds of meters into the ground, thus their differential local flux correlates with the density-length they traveled through.
In case of underground muography one exploits the low background and the higher flux...
Applications of both cosmic-ray (CR) muons and neutrons have grown in numbers in the last decades. Measurements of flux attenuation (radiography) and scattering angles (tomography) of CR muons have been successfully applied to the inspection or monitoring of large natural and civil structures, to the search for heavy metals in container and trucks, to the control of nuclear wastes, and much...
We plan to build a prototype muon tomography system for material identification utilizing multiple Coulomb scattering suffered by cosmic ray muons while passing through a matter. The resultant deflection from the original trajectory can be represented by a Gaussian distribution dependent on several physical properties of the matter (density $\rho$, atomic number $Z$) and also the muon...
Muon radiography applies to different situations and is
particularly suitable for subsoil imaging. The methodology can be used in order to carry out civil and archaeological investigations. This kind of applications need the muon telescope to be installed below the region to be investigated. The shape and size of such a muon detector have to reflect this necessity.
A novel borehole...
We are developing nucelar emulsions for muographys at Nagoya University and applied to many targets. In this talk, I'll present current status and new progress.
Cosmic-ray muons which impinge upon the Earth’s surface can be used to image the density of geological and man-made materials located above a muon detector. The detectors used for these measurements must be capable of determining both the muon rate and angle of incidence. Applications of this capability include geological carbon storage, natural gas storage, enhanced oil recovery, compressed...
Muon trackers are used for both scattering and transmission muography. When the properties of the object change over time, event timestamping is essential to study the temporal dynamics of the system. In addition, underground measurements present supplementary deployment constraints in terms of volume, weight and gas management, among others. The T2DM2* project at the Low Background Noise...