
Presentation Subtitle

Differentiating Awkward Arrays
Using JAX

Anish Biswas
IRIS - HEP Fellow

Manipal Institute Of Technology

Jim Pivarski
IRIS - HEP Mentor

Princeton University

Lukas Heinrich
IRIS - HEP Mentor

CERN

1

Presentation Subtitle

The IRIS-HEP Grand Analysis Challenge

2

?

https://github.com/gradhep/neos/tree/master/neos

Presentation Subtitle

● “JAX is NumPy on the CPU, GPU, and TPU, with
great automatic differentiation for
high-performance machine learning research.”

● One of the goals of the project, was to figure out
whether or not we could use JAX to enable
differentiation of functions involving Awkward
Arrays, and this becomes a good problem since
Awkward Arrays are by nature not rectilinear data
buffers.

● Can the resulting architecture handle the most
commonly used differentiation use-cases?

● Can we do better than writing another
auto-differentiation library specifically for
Awkward Arrays?

Defining the goals of this project

3

AwCCCkward1

Presentation Subtitle

● Even before we start discussing about how we can enable JAX to find gradients of functions containing
Awkward Arrays, we need to set up an interoperability standard between JAX and Awkward Arrays.

● JAX exposes a JAX Class Type called DeviceArray, which is used as the primary data type for
differentiation.

● We are currently using dlpack to achieve zero-copy interoperability with JAX DeviceArrays.
Converting between them is as simple as calling the `ak.to_jax()` or `ak.from_jax()`.

● dlpack is an improvement even if JAX was not involved. It is a more general/systematic way of sharing
arrays than what we had been using which was __cuda_array_interface__.

● As a syntactic sugar, ak.Array also accepts JAX DeviceArrays directly.

Device Arrays ⇔ Awkward Arrays

4

What are ufuncs?

● Numpy Universal functions that allow operations on any class that implements the array_ufunc class.

● These functions include square roots, trigonometric functions etc.

5

A Prelude to JAX Technicalities

● JAX does a number of fantastic things behind the scenes, so if you’d like to read about that in more details,

you should check out the Autodidax Documentation of JAX.

● However, I’ll try to stick to what is absolutely prerequisite to understand the “why” of the slides following

this.

● JAX uses `PyTrees` as a way to expose JAX transformations for other Python Data Containers. To

implement this, all we need to do is tell JAX how to break this complex Python Data Container into linear

buffers, and also how to re-assemble them back into this Python Data Container structure.

● These linear buffers, then get converted into JAX `Tracer` objects, which keep a track of all the

computations that is happening to the data buffer. As such, you can catch such Tracers flowing freely

through your functions midway through any computation. This might also cause complications since, many

functions which are not native to JAX, might fail to correctly treat these Tracers in the same way as they

would treat their Python Data Containers. Example: Slicing of Awkward Arrays.
6

https://jax.readthedocs.io/en/latest/autodidax.html

How does JAX interact with Awkward Arrays?

Unflatten the Awkward ArrayHandle Slices and ufuncsFlatten the Awkward Array

ak.Array([
[{"x": *, "y": [*]},

 {"x": *, "y": [*, *]},
 {"x": *, "y": [*, *, *]}],

[],
[{"x": *, "y": [*, *, *, *]}]

])

ak.Array([
[{"x": 1, "y": [11]},

 {"x": 4, "y": [12, 22]},
 {"x": 9, "y": [13, 23, 33]}],

[],
[{"x": 16, "y": [14, 24, 34, 44]}]

])

7

Let’s take an example!

8

View of the Array before and after the slice.

Before the Slice:

After the Slice:

Before the slice, the linear buffer of `[1, 2, 3, 4, 5]` had a JAX Tracer associated with it. It now
becomes important to slice this Tracer(since JAX passes these Tracers objects, throughout the function
computation and it needs to know how our function maps A -> B) in such a way that it starts representing
our Array after the slice. Since, slices can be complex in Awkward Arrays and most of them don’t map onto
linear buffers, we make use of Identities. 9

AwCCCkward1

Enter Identities

10

[[1.0, 2.0, 3.0], [], [4.0, 5.0]]

array([0, 0],
 [0, 1],
 [0, 2],
 [2, 0],
 [2, 1]], dtype=int64)

[[5.0, 4.0], [5.0, 4.0], [3.0, 2.0, 1.0]]

array([[2, 1],
 [2, 0],
 [2, 1],
 [2, 0],
 [0, 2],
 [0, 1],
 [0, 0]], dtype=int64)

What if there are multiple Tracers?

● There can arise a case where there are more than one children buffers.
An easy example is a Record Array.

● What happens when we have more than one buffer which results in
multiple Tracer objects as well? How do we differentiate between these
two buffers?

● We need to figure out a way to track which buffer the slice is acting on.
Sometimes, a slice might make a new copy which combines elements
from two or more buffers.

11

ak.Array([
[{"x": 1, "y": [11]},

 {"x": 4, "y": [12, 22]},
 {"x": 9, "y": [13, 23, 33]}],

[],
[{"x": 16, "y": [14, 24, 34, 44]}]

])

0x0000002e4c380

0x000002e4e390

PresentA bunch ation Subtitle

What if there are multiple Tracers?

12

The Solution:

● If the slices don’t create a new copy, keep a dictionary which maps those NumpyArray

pointers to the index in the buffer list.

 HashMap(ptrs -> index) -> {0x0000002e4c380: 0, 0x000002e4e390: 1}

● If the slices do create a new copy, use identities to collect all Tracers and make the

new linear buffer.

What JAX functions do we support?

● For now, `jax.jvp` and `jax.jit` are tested extensively.

● `jax.vjp` or reverse mode differentiation is in an experimental stage. The limitations are posted in more

detail as a documentation on the www.awkward-array.org website.

13

http://www.awkward-array.org

Future Work

● Awkward Scalars are Python numbers, while JAX scalars are 0-dimensional arrays. There has to be a notion

of a scalar in the Awkward Array library to support reverse mode differentiation using JAX. Currently the only

way is to generate the scalar in a way that `jax.vjp` works correctly is in the form of an Awkward Array

using slicing, like `array[0:1]`.

● Specialized functions / reducers, like `ak.sum()` and `ak.prod()` must be implemented in terms of JAX

primitives to have function containing such reducers to be correctly differentiable.

● Writing higher-level utility functions, like `ak.jax.jacobian`, `ak.jax.grad`, `ak.jax.jacfwd`, which

is built from elementary auto-differentiation functions i.e `jax.vjp` and `jax.jvp`.

● Eventually, we’d like to have more `ak.*` functions, to be defined in terms of JAX primitives, which would

allow for a lot more operations in the functions, without having to worry about some trivial operation driving

all the gradients to 0.

14

AwCCCkward1
Presentation Subtitle

THANK YOU!

trickarcher

anishbiswas271@gmail.com 15

https://github.com/trickarcher
mailto:anishbiswas271@gmail.com

