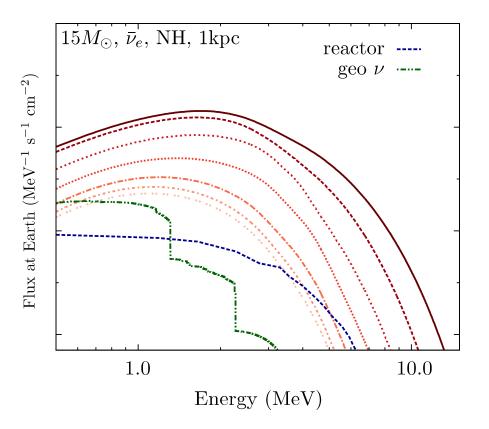
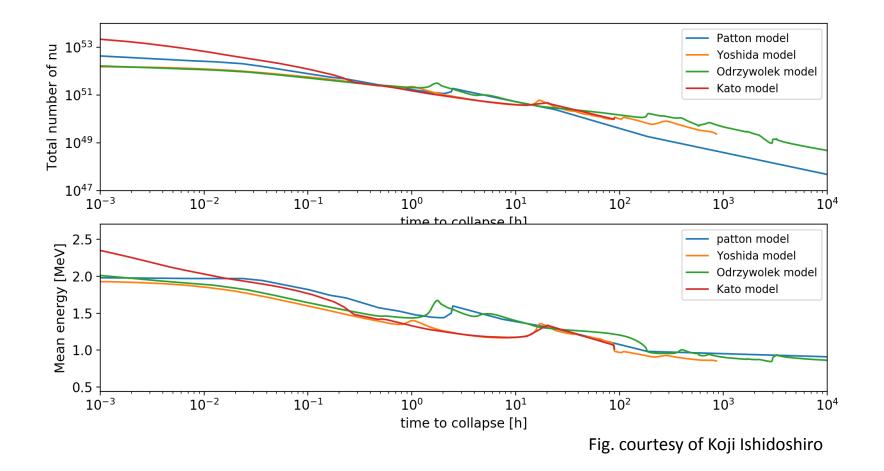
PRESUPERNOVA NEUTRINOS: OPEN QUESTIONS

Cecilia Lunardini


Arizona State University

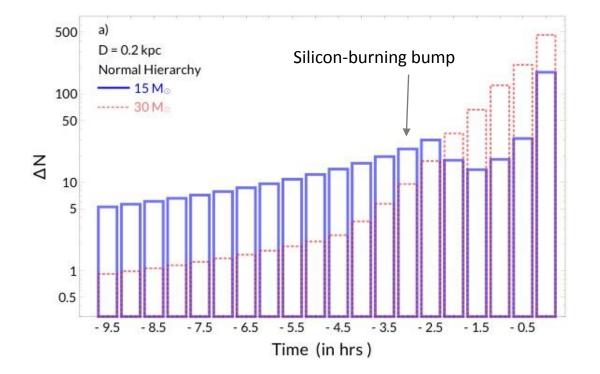
Co-convenor: Andrey Seshukov (disclaimer: references can be found in the SNEWS2.0 paper)



Presupernova \rightarrow collapse \rightarrow explosion

- Neutrinos from advanced stages of nuclear burning
 - Thermal (pair production)
 - Beta processes (capture, decay)
- 0.1-5 MeV energy
 - Need low threshold detector
- Detectable hours (days?) before the neutrino burst
 - For near-earth stars (D<1 kpc)

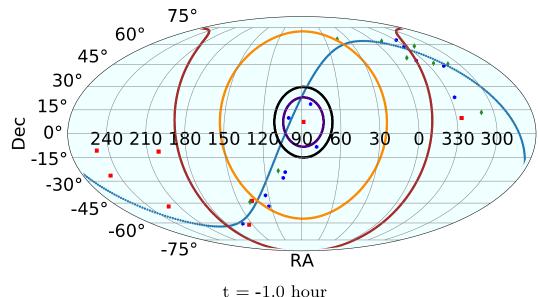
Overview of models



Numbers of events

detector	composition	mass	interval	N_{eta}^{CC}	N^{el}_{eta}	N^{CC}	N^{el}	$N^{tot} = N^{CC} + N^{el}$
JUNO	C_nH_{2n}	17 kt	$E_e \ge 0.5 \text{ MeV}$	3.19	2.34	10.1	7.19	17.3
				[0.09]	[4.32]	[2.592]	[10.2]	[12.8]
SuperKamiokande	H_2O	22.5 kt	$E_e \ge 4.5 \text{ MeV}$	0.04	0.02	0.43	0.03	0.45
				[0.00]	[0.05]	[0.15]	[0.06]	[0.21]
DUNE	LAr	40 kt	$E \ge 5 \text{ MeV}$	0.017	0.013	0.046	0.018	0.063
				[0.27]	[0.032]	[0.33]	[0.039]	[0.37]

Table 3. Numbers of events expected in the two hours prior to collapse, for a presupernova with progenitor mass $M = 15 M_{\odot}$, at distance D = 1 kpc and the normal mass hierarchy. The numbers in brackets refer to the inverted mass hierarchy. Different columns give the numbers for different detection channels: the superscripts *CC* and *el* refer respectively to the dominant charged current process (inverse beta decay or v_e absorption on the Ar nucleus) and to neutrino-electron scattering. The subscript β indicates the contribution of the β processes to those two channels. The total number of events is given in the last column. The results for Betelgeuse (D = 0.2 kpc) can be obtained by rescaling by a factor of 25.


Signal at liquid scintillator detector

- JUNO-like detector (17 kt), inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow n + e^+$
 - E > 1.8 MeV threshold
 - Background: 2.6 events/hour in reactor-on phase

Pointing at 10-kt scale LS detectors

- Sensitivity up to 1 kpc; angular error ~70° from IBD
 - Can provide shortlist of 4-10 candidates, about 1 hour prior to collapse
- Possible long term improvements:
 - ~30° with THEIA (100 kt)
 - ~10° with LS-Li

Presupernova neutrinos @SNEWS2.0

- Dedicated "slow burn" alarm?
 - How to discover a *slow, directional* rise above background in real time?
- O(day) early alert: dedicated alert system?
 - Different technical possibilities
 - Different/broader list of alert recipients
- Greater public involvement: the event of the millennium
 - Role of mainstream media and social media?
 - Danger of disinformation \rightarrow opportunity/duty of information?