Presupernova neutrinos: Shape analysis and combination

Andrey Sheshukov DLNP JINR

SNEWS2021 collaboration meeting Presupernova

12 May 2021

Motivation

Presupernova signal is weak and gradually increasing vs time.

Enhancing the detection significance (i.e. difference from the background) of such signal allows:

- Larger SN detection distance
- Earlier alert time

Shape analysis: significance calculation using the knowledge of the (expected) signal shape vs. time

Combination: using information from several experiments

Input

Three models for 15M_{sun} presupernova:

- Odrzywolek
- Patton et al.
- Kato et al.

Four analyses with comparable sensitivity to preSN:

- KamLAND
- Borexino
- SK-Gd positron+neutron DC
- SK-Gd neutron capture only (positron lost)

Only IBD channel (Strumia-Vissani)

Detector	N_{sg} in Kato15	last hour befor Odr15	re SN @200pc Pat15	$N_{bg}/{ m hour}$	Counting window
Borexino KamLAND SK-Gd DC SK-Gd neutron	3.95 (0.705)	1.15 (0.327)	2.11 (0.5)	0.0014	48 hours
	7.13 (1.19)	2.4 (0.681)	4.39 (1.0)	0.0029	48 hours
	86.6 (17.5)	15.7 (4.45)	29.7 (8.13)	1	12 hours
	42.5 (7.05)	14.8 (4.21)	26.8 (6.09)	5.5	12 hours

Counting analysis vs. shape analysis

Analysis: calculate the significance of observing SN on top of the expected background

Counting Analysis:

neutrino interactions in a given time window:

$$N = N_{sg} + N_{bg}$$

- Follows Poisson distribution
- Easy and fast calculation
- Model-independent
- Works bad in high background
- Time precision limited by the time window

Shape Analysis:

use log likelihood ratio

$$L = log(1+S(t)/B(t)),$$

S and B - expected sg and bg rates.

- Complicated distribution calculation
- Limited precision (no analitical solution)
- Depends on the expected signal model
- Enhanced significance in high background
- Significance peak around SN start

CA vs SA for Odr15 vs. distance

CA vs SA for Odr15@200pc vs time

CA vs SA for detection at z=5 sigma

Combination (90% detection efficiency at z=5 sigma)

Summary

- Considered methods enhance the presupernova detection significance
- Shape analysis:
 - Better enhancement over counting in case of higher background
 - Model dependent, but works fine if the signal shapes have common features
 - CA is equal to SA with expected flat signal shape vs time even wrong model is usually better than this.
- Combination:
 - Increases detection time 2h -> 5h @200pc
 - Increases detection reach by ~100pc
 - Experiments with weaker sensitivity are important!
- We considered only a subset of experiments for demonstration
 - The same approach works for CCSN neutrinos.
 - And for other interaction channels
 - And for larger future experiments
 - This evaluation can be done in the future after integrating preSN models with SNEWS simulation pipeline
- SA and Combination methods are available as python package: sn_stat
 - Applicable for the real-time analysis