
SuperNova Asynchronous Pipeline

Andrey Sheshukov
DLNP JINR

SNEWS2021 collaboration meeting 
Implementation

12 May 2021



Example of analysis flow for the SN trigger in NOvA

● Data flows in one direction in chains: from source through several steps

● Steps in one chain are not synchronous: input and output of each step can be different 
and not directly synchronized.

● Chains can have branching

● Computationally heavy steps need to be parallelized

● Each step/source can have many configuration parameters

● Order of the steps is also a configuration

Usually this requires setting up threads, produces/consumers, worker pools... 2



A python framework for constructing realtime data processing pipelines.

SNAP allows to easily chain the python functions/coroutines/classes.
Features: 

● Allows to describe processing sources/steps
● Based on python asyncio - no need for threading
● Automatic separating event loops, where needed (i.e. buffering)
● All the configuration is separated from the code, kept in a YAML format.
● Extendable plugin system
● Can be used to construct microservices

Works for many tasks: combination, filtering, monitoring, sending alarm, visualization 
etc.

● Framework core: https://github.com/Sheshuk/snap-base
● SN combination: https://github.com/Sheshuk/snap-combine

SuperNova Async Pipeline (SNAP)

3

https://github.com/Sheshuk/snap-base
https://github.com/Sheshuk/snap-combine


Usage example

snap example_cfg.yml -n node_branching

Generate random numbers (via random walk)
Separate processing chains for x>0 and x>3

Count number of positive values per second 4

example_cfg.yml

example.py



Monitoring example: 
Real-time web visualization for the SN significance
One of the modules acts as the WebSockets server, sending all the data to 
clients’s browser.

5

t=-60s t=-35s

Data from NDData from FD Combined

0

1

2

3

4

z=5
Data moves to the past

Combination is updated 
when new data arrives

A more complex usage example


