Experimental challenges (*) at future e⁺e⁻ colliders

E. Perez (CERN)

ECFA kick-off meeting, Physics at a future electron-positron Higgs/top/electroweak factory

June 18, 2021

(*) Guideline from the conveners: focus on systematic uncertainties and their control

Many thanks to G. Wilson, R. Poeschl, A. Robson, J. List, J. Alcaraz, P. Janot for their input and comments!

The proposed Electroweak / Higgs / Top factories [1]

Energies (1st col.) in GeV, luminosities (2nd col.) in ab-1. Yellow = in baseline plan

ILC

FCC

CLIC

Numbers for two IPs

 $ee \rightarrow H$

GigaZ	0.1	5 10 ⁹ Z
WW	0.5	3.5 10 ⁶ WW

TeraZ	150	5 10 ¹² Z
WW	12	5 10 ⁷ WW

10/y

GigaZ	0.1	5 10 ⁹ Z
-------	-----	---------------------

250	2	750k H
tt	0.2	150k tt

500	4	1.5 M H	
		3 M tt	

6/18/2

240	5	1M H
tt	1.5	1M tt

FCC at ZH; lower at lower \sqrt{s} ; no plan yet to run at the top threshold.

CEPC: same luminosity as

O(1 M) of Higgs, O(1 M) of tt Trillions / Billions of Z

125

tt	1	160k H
		700k tt

1500	2.5	1M H 400k tt
3000	5	3.3M H 300k tt

E.Perez

Introduction

Future ee colliders offer a broad programme of precision measurements in the electroweak, Higgs and top sectors.

well established and documented

Statistical uncertainties: in general easy to assess

- they set the desired level for the systematic uncertainties (exp. and theo.)
- very large statistics: challenging goals on the understanding of syst. effects
- may also define challenging goals for detector and analysis design

Various studies already, different level of maturity

 work pays off: some sources of systematic looked initially challenging but ideas have been proposed and developed to control them to the desired level.

Outline:

- Key uncertainties that affect many measurements
- Go through a few examples

Luminosity measurement

- σ(ZH) for Higgs couplings with 1M Higgs: need Lumi at the per-mil level
- Precision EW measurements: call for ΔL/L of O(10⁻⁴)

Determine the luminosity from the rate of Bhabha events, measured in two forward calorimeters centered around the outgoing beam-pipes.

 $d\sigma/d\theta \sim 1/\theta^3$: excellent control of the acceptance is the key

Method of "asymmetric acceptance":

Events are selected if :
e- in Narrow and e+ in Wide
or
e+ in narrow and e- in Wide

Largely reduces the dependence of A on:

- radial or longitudinal displacements of the IP wrt lumi system.
- Any displacement of the vertex (e.g. ISR)
- Inner radius of the detector must be known very precisely! down to 1.6 μm for FCC
- Beam-induced effects must be corrected [2]
 - Depend on machine and bunch parameters
 - Method proposed recently [3] for a correction that doesnot rely fully on simulation

6/18/21 4 E.Perez

Determination of the beam polarisation

Longitudinal beam polarisation measured from inverse Compton scattering both upstream and downstream of the IP.

Complementarity of

- Dedicated, fast, measurements in the polarimeters, at the level of 0.25%
- In-situ measurements of cross-sections of processes with a strong P dependence
 - With both P(e-) and P(e+), as at ILC, can provide very high precision, at the per-mille level or better [4]
 - But requires a large statistics

In-situ measurements provide the overall scale to calibrate the polarimeters, which monitor the variations.

Note: also important to measure very precisely the non-polarisation (longitudinal) of beams at FCC!

Center-of-mass energy

- Need to know $< \sqrt{s} >$ precisely
 - Key systematics for all mass measurements, and all EW observables.
- And the distribution of \sqrt{s} , i.e. :
 - basically the (gaussian) beam-energy spread (BES) for a circular machine
 - the luminosity spectrum for a linear collider
 - Large tail because of beamstrahlung

- FCC-ee, Z peak and WW threshold: exquisite precision on < √s > (100 keV at the Z, 300 keV at WW) thanks to quasi-continuous resonant depolarisation (RDP) measurements [5]
 - very powerful, unique to circular machines
 - allows a measurement of M_Z to 100 keV
- Circular at higher \sqrt{s} , and linear : exploit kinematic constraints of ee \rightarrow ff (γ)
 - also used at circular machines to determine the BES

Constrained kinematics: $\langle \sqrt{s} \rangle$ from ee \rightarrow ff (γ) events

- Above the Z peak: radiative return events, cf LEP2 : $s=m_Z^2 imes rac{\sin \vartheta_1 + \sin \vartheta_2 + |\sin(\vartheta_1 + \vartheta_2)|}{\sin \vartheta_1 + \sin \vartheta_2 |\sin(\vartheta_1 + \vartheta_2)|}$
 - Depends only on angles
 - Can use Z → qq in addition to Z → II
 - At FCC, can be used to determine < √s > (~ 2 MeV) at 240 GeV
 - method can be calibrated at 160 GeV against the RDP meas.
 - At 350-365 : complement with ZZ and WW events, expect O(5 MeV)
- Or, using muon momenta in (all) μμ(γ) events : [6]

$$\sqrt{s} = E(\mu^{+}) + E(\mu^{-}) + E(\gamma)$$
 with $E(\gamma) = p(\gamma) = |\mathbf{p}(\mu^{-}) + \mathbf{p}(\mu^{+})|$

"s_p" method, developed at ILC Much better statistical power with a good muon momentum resolution (not limited by the width of the Z). Stat potential with ILC/FCC tracker momentum resolution:

 $\Delta \sqrt{s} \sim 230$ MeV per diµ event when p(µ) ~ 50 GeV

- i.e. negligible stat error at 240 250 GeV for LC / CC
- syst uncertainty given by the absolute p scale

 $\begin{aligned} &\text{Measure } \sqrt{s}_p \text{ using,} \\ &(|\vec{p}_+|,\,|\vec{p}_-|,\,|\vec{p}_+ + \vec{p}_-|) \end{aligned}$

Key = tracker momentum calibration.

Tracker momentum scale

- At $\sqrt{s} > M_Z$, can be determined from the $Z(\mu\mu)$ peak in Z(+X) events
 - Would be limited to > 2.3 MeV / M_Z = 25 10⁻⁶ with the current unc. on M_Z
 - At FCC: Improved M_Z to 100 keV, and regular runs at the Z peak: scale calibrated to 1 ppm for the post-TeraZ runs.
- Alternative: Use $J/\psi \rightarrow \mu\mu$ [6], taking advantage from :
 - Statistics not so poor : 0.15 J/ $\psi \rightarrow \mu\mu$ events in 1000 Z \rightarrow had decays
 - Excellent knowledge from the J/ ψ mass (to 1.9 ppm)
 - Excellent σ(M) offered by the detector (2-3 MeV)

Statistical potential:

- GigaZ: 100 fb⁻¹ at Z peak : abs scale to < 5 ppm
- ILC 250: abs. scale to < 10 ppm

Further improvements could come from using other resonances (D0, Ks) which are produced much more copiously [7].

6/18/21 8

Muon momentum scale: challenges

This high statistical potential can be spoiled by whatever affects the tracking... Need to know how to correct for non-uniformities of the momentum scale in time or across the detector, in particular :

- Tracker alignment
- Material distribution, etc
- Knowledge of the (complicated) magnetic field: stability, magnetic field map
 - Precise mapping of the field + NMR probes (~ 10 ppm ?)

Need to be controlled:

- At the level of a few ppm to ensure a √s uncertainty of a few ppm at ILC, opening up a programme of precision EW measurements at ILC [6, 8]
- At FCC at the Z peak: 1 ppm on √s provided by RDP but 2x better precision is desirable for the point-to-point uncertainty, i.e. relative uncertainty on √s across the √s points in the lineshape scan [5].
 - measurement of Γ_Z to 25 keV, also for $A_{FB}(\mu\mu)$
 - Very large statistics of low mass resonances likely provides a sub-ppm monitoring of scale variations \rightarrow pt-to-pt $\Delta\sqrt{s}$ can be obtained my comparing the position of the Mµµ peak, across the scan.
- To be studied in detail!

Constrained kinematics: also brings the energy distribution

ee \rightarrow f f (γ): the relative longitudinal momentum imbalance can be reconstructed from the angles of the fermions only. Imbalance can be due to:

- intrinsic energy spread of the beam
- intrinsic e⁺ and e⁻ beam energy difference
- photon ISR or beamstrahlung along the z axis
- FCC: use dimuon events to reconstruct the distribution [5]
 - The width of $x_{\gamma} = p_{Z}(\gamma) / \sqrt{s}$ gives the BES, precision of 0.1% with 1M events
 - 0.1% per 5 min at the Z peak
 - 1% per day at 240 GeV
- LC: use Bhabha events instead (stat), with e- detected in the tracker [9] (or dimuons too at a GigaZ run)

The distribution of the acollinearity gives the luminosity spectrum. Mostly relevant for CLIC at highest \sqrt{s} , e.g. leads to 0.15% on $\sigma(\nu\nu H)$. [10]

Alignment

Tracker alignment needs to be in line with the exquisite intrinsic resolution – e.g. single hit resolution of a few mum.

some measurements may set very challenging requirements – e.g. measure
the tau lifetime at FCC-ee with a precision commensurate with what the
statistic offers!

Surveys and laser-based systems usually provide a good starting point.

Precise alignment achieved with real tracks – from cosmics, collisions, with and without magnetic field. [11, 12]

- FCC: considers regular alignment / calibration runs at the Z peak. Provides very large rate of high p tracks. Was done at LEP, deemed good use of beam time!
 - E.g. every month (12 hours setup)
 - 100 10⁶ Z in 12 hours: x20 LEP/exp! each Z → had evt: about 15 tracks.
- ILC: feasibility now established for interesting luminosity (L of 2-4 10³³ cm⁻² s⁻¹) at the Z peak.
 - 14 10⁶ Z in one day: x3 LEP/exp
 - To be compared with ~ 100 10⁶ Z at 250 GeV, full sample.

Calibrations: energy scales, efficiencies, etc

- Running at the Z peak offers a standard candle for calibration of energy scales, reconstruction efficiencies, particle ID efficiencies, etc.
 - LEP expts typically achieved uncertainties of 0.1% 1% on tracking reco, lepton id, flavour tagging etc, jet energy calibration at 1-2%.
 - At FCC, should be controlled to 10⁻⁴ with regular calib. runs at the Z peak
- Calibrations should anyway be controlled in-situ too

Example full simulation studies, at ILC 250 and CLIC [12], using Z + γ events

and the constrained kinematics:

- Photon energy scale from $Z(\mu\mu) + \gamma$ [13]

- Reconstruct $E(\gamma)$ from the momenta of the muons and the angles of the muons and γ
- Calibration: a few 10⁻⁵ to a few 10⁻⁴
- Jet energy scale from $Z(jj) + \gamma$ [14]
 - Reconstruct the jet energies from the angles only (of both jets and the γ)
 - Calibration to O(10⁻⁴)

Now a few examples of measurements...

[illustrating some areas where further work is needed]

Measurement of the W mass (and width) from a threshold scan

Sensitivity to mass and width is different at different \sqrt{s} : can optimize mass and width by choosing carefully the \sqrt{s} points [15].

Lumi	Collider	ΔM _W (stat.)
12 ab ⁻¹	FCC-ee	400 keV
0.5 ab ⁻¹ w P = (90%, 60%)	ILC (not in baseline)	1100 keV [16]

- \sqrt{s} : near threshold: $\Delta M_W \approx \Delta(\sqrt{s}) / 2$
- Point-to-point normalisation uncertainties
 - lumi, signal efficiencies: a few 10⁻⁴
- Background: $\Delta M_W \approx 500 \text{ keV x } (\Delta \sigma / 1 \text{ fb})$
 - E.g. 4 jet channel: $\sigma(bckgd)$ is ~ 200-300 fb
 - Polarised : constrained from 4 (P-, P+) configurations.
 - Unpolarised : constrained from data below the WW threshold

Syst < stat demanding. Need to find an optimal scan scenario which minimizes the background uncertainties thanks to correlations.

Measurement of the W mass from final state reconstruction

Both at threshold and at higher \sqrt{s} : M_W can be obtained from final state reconstruction.

Several methods can be contemplated.

 esp. with precise knowledge of √s, does not have to rely only on hadronic masses (JES syst.)

FCC: at threshold, precision may compete with scan – i.e. O(500 keV) - if systematic uncertainties are controlled [17].

ILC baseline: could allow a < 3 MeV measurement with 250 GeV dataset [8].

Example: Kinematic fit

- Exploit 4-momentum conservation: thanks to precise knowledge of √s
 - $\Delta \sqrt{s}$ at FCC 240 GeV: yet to be improved to compete with the scan!
 - Requires very good understanding of full error matrices of objects
 - Effect of ISR and beamstrahlung?
- Hadronic channel : uncertainties from WW → had modeling ?
 - Controlled from precise measurements of frag. properties of $Z \rightarrow qq$

Precision meas. of EW couplings: $\sin^2\theta_{eff}$ from A_e

$$A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2} \ .$$

- Polarized collider: $A_e = A_{LR} = (\sigma_L \sigma_R) / (\sigma_L + \sigma_R)$. Robust. Dominant syst. from the polarisation measurement, measured in-situ thanks to both P+ and P-:
 - ILC 250, 2 ab⁻¹: 80 M hadronic Z's from radiative return: stat dominated:
 - Stat error (rel) = 10^{-3} , i.e. $\Delta(\sin^2\theta_{eff}) \sim 2 \cdot 10^{-5}$ (\sim current / 10)
 - Giga-Z: 3 10⁹ hadronic Z's, dominated by systematics [8]
 - Precise meas. of \sqrt{s} is crucial: rel error = 1.3 10⁻⁴ x $\Delta\sqrt{s}$ / MeV
 - Pol: 5 10⁻⁴ (rel) expected from $\sigma(2f)$, i.e. $\Delta(\sin^2\theta_{eff}) \sim 10^{-5}$

NB: Such precisions on $\sin^2\theta$ eff call for improved M_Z, $\alpha_{QED}(M^2_z)$!!

At the Z pole: less in-situ constraints on pol (no WW) absent, i.e. larger impact of the polarimeter measurement? Independent meas. useful - via $P(\tau)$ for example.

FCC: get A_e from the angular distrib. of the tau polarisation

Fit of $P(\tau)$ vs $\cos\theta\tau$: A_e much less affected by syst. than A_{τ} .

- Main uncertainty: Bhabha bckgd, measured in-situ.
- Should provide $\Delta(\sin^2\theta_{eff}) = 2-3 \cdot 10^{-6}$

 A_{τ} more demanding: e.g. systematics on ECAL scale and γ misid to be studied. Focus on $\rho\nu$ or $\tau\to h\nu$: avoid modelling uncertainties affecting the a1 channel.

$$1 / R_{l} = \Gamma_{l} / \Gamma_{had}$$
,
 $R_{b.c} = \Gamma_{b.c} / \Gamma_{had}$

- Dominant systematic on R_I expected to come :
 - from identification efficiencies with a few times the LEP statistics (ILC 250)
 - from the determination of the acceptance at GigaZ / FCC

Example, R_I at FCC: goal for $\Delta R_I / R_I = 1-5 \cdot 10^{-5}$. Position of edge of the forward calorimeter, edge of tracking acceptance: must be known to O(10 μ m).

- the fwd detector must be carefully designed
 - e.g. hermetic calo, precise pre-shower in front
- will need "asymmetric" selection as done for the luminosity measurement
- Measurement of R_{b,c}: large statistics + improved VTX detectors w.r.t LEP / SLD allows to focus on double-tagged events. Expected systematics:
 - Hemisphere correlations: much less an issue than at LEP thanks to very small beam-spot. Further minimized with a tagger whose efficiency is independent on the b kinematics.
 - Large control samples to study effect of gluon splittings
 - Selections that minimize QCD effects

Uncertainties O(10x – 100x) better than current ones within reach: [8, 18] $\Delta R_b / R_b \sim (0.5 - 1) \cdot 10^{-4}$ at FCC, $(7 - 10) \cdot 10^{-4}$ at GigaZ / LC

6/18/21 17 E.Perez

Conclusions

- Strategies are being developed to control luminosity, √s, polarisation, calibrations, alignment at a level such such that these should not limit the experimental accuracy of the majority of measurements. Still lots of work ahead, e.g. :
 - o Improving further on the precision on \sqrt{s} is worth the effort
 - \circ Reaching 10⁻⁴ on the Luminosity with Bhabha is a real challenge: alternative? Can we use ee $\rightarrow \gamma\gamma$ events? (acceptance, ee background)
- Systematic uncertainties related to background subtraction: must be studied separately for each analysis
 - In many cases, scale down with the increased statistics (control samples, insitu bckgd determinations). How low can we go?
- Kinematic fits can lead to reduced uncertainties. Full potential to be understood and quantified - can serve several analyses
- Systematic uncertainties vs detector design :
 - Unprecedented requirements e.g. on :
 - The determination of the acceptances at GigaZ / TeraZ
 - The stability of the momentum reconstruction and magnetic field
 - Importance of redundancy

- [1] The International Linear Collider: A Global Project, arXiv:1903.01629
 High-Luminosity CLIC Studies, https://cds.cern.ch/record/2687090
 Updated CLIC luminosity staging baseline, arXiv:1812.01644
 FCC-ee: The Lepton Collider (CDR), https://cds.cern.ch/record/2651299
- [2] Impact of beam-beam effects on precision luminosity measurements at the ILC, C. Rimbault et al., <u>JINST 2 (2007) P09001</u>
- [3] Beam-beam effects on the luminosity measurement at FCC-ee, G. Voutsinas et al, <u>JHEP 10 (2019) 225</u>
- [4] Polarized Beams at Future e+e- Colliders, J. List, Talk at ICHEP 2020
- [5] Polarization and Centre-of-mass Energy Calibration at FCC-ee, A. Blondel et al, <u>arXiv:1909.12245</u>
- [6] Precision Electroweak Measurements with ILC250, G. Wilson, Talk at ICHEP 2020

19

- [7] High Precision Tracker Momentum-Scale Calibration, G. Wilson, Talk at LCWS 2021
- [8] Tests of the Standard Model at the International Linear Collider, K.Fujiii et al, arXiv:1908.11299
- [9] Studies on the Measurement of Differential Luminosity using Bhabha Events at the ILC, A. Sailer, <u>Diploma thesis</u> Luminosity spectrum reconstruction at linear colliders, S. Poss and A. Sailer, <u>Eur. Phys. J. C 74 (2014)</u>, <u>2833.</u>
- [10] Higgs physics at the CLIC electron-positron linear collider, H. Abramowicz et al., Eur. Phys. J. C 77, 475 (2017)
- [11] Z-Pole running for detector calibration and alignment, session at LCWS 2-16
- [12] In situ detector calibration at CLIC, D. Arominski et al, http://cds.cern.ch/record/2686663
- [13] Photon Energy Calibration using ee $\rightarrow \gamma Z$ at ILC, T. Mizuno, ILD-PHYS-PUB-2019-006

- [14] Jet Energy calibration using ee $\rightarrow \gamma Z$ at ILC, T. Mizuno, Talk at LCWS 2021
- [15] Data-taking strategy for the precise measurement of MW with a threshold scan at circular electron positron colliders, Shen, Azzurri et al, Eur. Phys. J. C (2020) 80
- [16] The uncertainty from [8] has been scaled to 500 fb-1. See also: Updated Study of a Precision Measurement of the W Mass from a Threshold Scan Using Polarized e-e- and e+e+ at ILC, G. Wilson, arXiv:1603.06016
- [17] Calorimetry and W mass measurement for future experiments, M. Beguin, PhD thesis, Université de Paris-Saclay,
- [18] Challenges for EW b physics measurements, F. Palla, Talk at the FCC week 2019
- [19] Precision Higgs physics at the CEPC, F. An et al, 2019 Chinese Phys. C 43 043002
- [20] Measurement of the Higgs boson mass and e+e \rightarrow ZH cross section using Z \rightarrow μ + μ and Z \rightarrow e+e \rightarrow at the ILC, J. Yan et al., <u>Phys. Rev. D 94, 113002 (2016)</u>

6/18/21 21 E.Perez

- [21] Determination of the electroweak couplings of the 3rd generation of quarks at the ILC , A. Irles et al, PoS EPS-HEP2019 (2020) 624
- [22] Revisiting QCD corrections to the forward-backward charge asymmetry of heavy quarks in e+e- collisions at the Z pole, J. Alcaraz Maestre, arXiv:2010.08604
- [23] Determination of Luminosity, M. Dam, Talk at the FCC week, 2019

Backup

Example of Higgs measurements: M_H

Extracted from an analysis of the distribution of the recoil mass

Better precision (Γ_H or even better!) desirable in view of a potential run at 125 GeV at FCC.

- $\Delta(\sqrt{s})$ of 1-2 MeV and uncertainty on BES adequate
- Optimize the resolution of Z → ee channel and use exclusive modes, including Z → had., exploiting kinem. constraints: many systematic studies to be carried out!

Increasing tail of M_{rec} distribution with increasing beamstrahlung!

CLIC: best prospect from exclusive H → bb reco. Systematics from b-jet energy scale is comparable to the stat. uncertainty (40 MeV).

6/18/21 24 E.Perez

 0.23221 ± 0.00029

Additional challenge w.r.t. R_b: need to determine the charge of the b

→ vertex charge, lepton charge, also Kaon charge very powerful ⇒ particle ID [21]

At Z peak: ΔA_{FB}^{b} : 0.0016 (stat) ± 0.0007 (syst). Contributions to this systematics :

- Charge confusion + Contamination from charm and light: scale with the statistics, as can be reduced from large control samples moreover, with huge stat: can use exclusive B+ modes to largely get rid of it.
- QCD corrections: 3 10⁻⁴
 can be reduced by O(10) with acollinearity cuts [22]

The proposed "low energies" Electroweak / Higgs / Top factories

Alternative measurement of the luminosity : ee $\rightarrow \gamma \gamma$ at large angles

- Pure QED process (at LO)
- Well controlled theoretically

Much smaller σ than small angle Bhabhas, but statistics still adequate for a precision of 10^{-4}

Example: [23] $\theta_{min} = 20 \text{ deg}$ Huge contamination from $e^+e^- \rightarrow e^+e^-$ before any id cut (20 - 100x signal)

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	Large angle e⁺e⁻ → e⁺e⁻
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	$e^+e^- \rightarrow ZH$	0.2 pb	5.6 pb	134 pb
350 GeV	$e^+e^- \rightarrow tt$	o.5 pb	2.6 pb	6o pb

Need a good control of the e/ γ separation (γ conversions, e $\rightarrow \gamma$ fake rate).

e.g. with ε (γ id) = 99% and fake(e $\rightarrow \gamma$) = 1%, would need to know the γ id inefficiency to the % level and the fake rate to a few per-mille.

Worth to take a closer look – systematics completely different from small angle Bhabhas (and no beam induced effect!)