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The proposed Electroweak / Higgs / Top factories [1]
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250 2 750k H
tt 0.2 150k tt

TeraZ 150 5 1012 Z
WW 12 5 107 WW

tt 1 160k H
700k tt

GigaZ 0.1 5 109 Z
WW 0.5 3.5 106 WW

125 10/y ee → H

240 5 1M H
tt 1.5 1M tt

1500 2.5 1M H
400k tt

3000 5 3.3M H
300k tt

ILC FCC CLIC

Energies (1st col.) in GeV, luminosities (2nd col.) in ab-1 . Yellow = in baseline plan

CEPC: same luminosity as 
FCC at ZH ; lower at lower 
√s ; no plan yet to run at the 
top threshold.

O( 1 M ) of Higgs,  O( 1 M ) of tt
Trillions / Billions of Z

500 4 1.5 M H
3 M tt

Numbers for two IPs

GigaZ 0.1 5 109 Z



Introduction
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Statistical uncertainties: in general easy to assess
• they set the desired level for the systematic uncertainties (exp. and theo.)
• very large statistics: challenging goals on the understanding of syst. effects
• may also define challenging goals for detector and analysis design

Various studies already, different level of maturity
• work pays off: some sources of systematic looked initially challenging but 

ideas have been proposed and developed to control them to the desired level.

Outline:
- Key uncertainties that affect many measurements
- Go through a few examples

Future ee colliders offer a broad programme of precision measurements in the 
electroweak, Higgs and top sectors.

• well established and documented



Luminosity measurement
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Method of “asymmetric acceptance” :

Largely reduces the dependence of A on:
• radial or longitudinal displacements of the 

IP wrt lumi system.
• Any displacement of the vertex (e.g. ISR)

Events are selected if :
e- in                 and e+ in     n        

or
e+ in narrow and e- in Wide

WideNarrow

Determine the luminosity from the rate of Bhabha events, measured in two forward 
calorimeters centered around the outgoing beam-pipes. 

• σ(ZH) for Higgs couplings with 1M Higgs: need Lumi at the per-mil level
• Precision EW measurements : call for ΔL/L of O(10-4)

dσ/dθ ~ 1 / θ3 : excellent control of the acceptance is the key

• Inner radius of the detector must be known very precisely ! down to 1.6 μm for FCC

X

• Beam-induced effects must be corrected [2]
• Depend on machine and bunch parameters
• Method proposed recently [3] for a correction that doesnot rely fully on simulation



Determination of the beam polarisation
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Complementarity of 
- Dedicated, fast, measurements in the polarimeters, at the level of 0.25%
- In-situ measurements of cross-sections of processes with a strong P dependence

- With both P(e-) and P(e+), as at ILC, can provide very high precision, at the 
per-mille level or better  [4]

- But requires a large statistics 

Longitudinal beam polarisation measured from inverse Compton scattering both 
upstream and downstream of the IP.

In-situ measurements provide the overall scale to calibrate the polarimeters, 
which monitor the variations.

Note: also important to measure very precisely the non-polarisation (longitudinal) 
of beams at FCC !



Center-of-mass energy
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• Need to know < √s > precisely
• Key systematics for all mass measurements, 

and all EW observables.

• And the distribution of √s, i.e. :
• basically the (gaussian) beam-energy spread 

(BES) for a circular machine
• the luminosity spectrum for a linear collider

• Large tail because of beamstrahlung

• FCC-ee, Z peak and WW threshold: exquisite precision on < √s > (100 keV at 
the Z, 300 keV at WW) thanks to quasi-continuous resonant depolarisation
(RDP) measurements  [5]

- very powerful, unique to circular machines
- allows a measurement of MZ to 100 keV

• Circular at higher √s, and linear : exploit kinematic constraints of ee → ff (𝛄)
- also used at circular machines to determine the BES



Constrained kinematics: <√s > from ee →ff (𝛾) events 
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• Above the Z peak: radiative return events, cf LEP2 :
- Depends only on angles
- Can use Z → qq in addition to Z → ll
- At FCC, can be used to determine < √s > (~ 2 MeV) at 240 GeV 

- method can be calibrated at 160 GeV against the RDP meas.
- At 350-365 : complement with ZZ and WW events, expect O(5 MeV)

• Or, using muon momenta in (all) μμ(𝛾) events :  [6]

√s = E(μ+) + E(μ-) + E(𝛾)  with E(𝛾) = p(𝛾) = | p(μ-) + p(μ+) |

Key = tracker 
momentum 
calibration. 

“sp” method, developed at ILC  
Much better statistical power with a good muon 
momentum resolution (not limited by the width of the Z).
Stat potential with ILC/FCC tracker momentum resolution: 
Δ√s ~ 230 MeV per diμ event when p(μ) ~ 50 GeV

- i.e. negligible stat error at 240 - 250 GeV for LC / CC
- syst uncertainty given by the absolute p scale



Tracker momentum scale
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• At √s > MZ, can be determined from the Z(μμ) peak in Z(+X) events
• Would be limited to > 2.3 MeV / MZ = 25 10-6 with the current unc. on MZ
• At FCC: Improved MZ to 100 keV, and regular runs at the Z peak: scale 

calibrated to 1 ppm for the post-TeraZ runs.

• Alternative: Use J/𝜓 → μμ [6], taking advantage from :
• Statistics not so poor : 0.15 J/𝜓 → μμ events in 1000  Z → had decays
• Excellent knowledge from the J/𝜓 mass (to 1.9 ppm)
• Excellent σ(M) offered by the detector ( 2-3 MeV )

Statistical potential:  
• GigaZ: 100 fb-1 at Z peak : abs scale to < 5 ppm
• ILC 250: abs. scale to < 10 ppm

Further improvements could come from using 
other resonances (D0, Ks) which are produced 
much more copiously  [7].



Muon momentum scale: challenges
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This high statistical potential can be spoiled by whatever affects the tracking…
Need to know how to correct for non-uniformities of the momentum scale in time 
or across the detector, in particular :
• Tracker alignment
• Material distribution,  etc
• Knowledge of the (complicated) magnetic field: stability, magnetic field map

• Precise mapping of the field + NMR probes ( ~ 10 ppm ? )

Need to be controlled:
- At the level of a few ppm to ensure a √s uncertainty of a few ppm at ILC, 

opening up a programme of precision EW measurements at ILC [6, 8]
- At FCC at the Z peak: 1 ppm on √s provided by RDP but 2x better precision 

is desirable for the point-to-point uncertainty, i.e. relative uncertainty on √s 
across the √s points in the lineshape scan [5].

- measurement of ΓZ to 25 keV,  also for AFB(μμ)
- Very large statistics of low mass resonances likely provides a sub-ppm 

monitoring of scale variations → pt-to-pt Δ√s can be obtained my 
comparing the position of the Mμμ peak, across the scan.

- To be studied in detail !



Constrained kinematics: also brings the energy distribution 
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ee → f f (𝛾) : the relative longitudinal momentum imbalance can be reconstructed 
from the angles of the fermions only. Imbalance can be due to :

- intrinsic energy spread of the beam
- intrinsic e+ and e- beam energy difference
- photon ISR or beamstrahlung along the z axis 

• FCC: use dimuon events to reconstruct 
the distribution  [5]
The width of x𝛾 = pZ (𝛾) / √s gives the BES, 
precision of 0.1% with 1M events

- 0.1% per 5 min at the Z peak
- 1% per day at 240 GeV

• LC: use Bhabha events instead (stat), 
with e- detected in the tracker [9]  (or 
dimuons too at a GigaZ run) 

The distribution of the acollinearity gives the luminosity spectrum.
Mostly relevant for CLIC at highest √s, e.g. leads to 0.15% on σ(𝜈𝜈H).   [10]



Alignment
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- power-pulsing, triggerless readout: not good for cosmics
- ILC: Need to re-establish alignment after each push-pull

Tracker alignment needs to be in line with the exquisite intrinsic resolution – e.g. 
single hit resolution of a few mum.

• some measurements may set very challenging requirements – e.g. measure 
the tau lifetime at FCC-ee with a precision commensurate with what the 
statistic offers !

Surveys and laser-based systems usually provide a good starting point.
Precise alignment achieved with real tracks – from cosmics, collisions, with and 
without magnetic field.  [11, 12]

• FCC: considers regular alignment / calibration runs at the Z peak. Provides very 
large rate of high p tracks. Was done at LEP, deemed good use of beam time !

• E.g. every month (12 hours setup)
• 100 106 Z in 12 hours:  x20 LEP/exp ! each Z → had evt: about 15 tracks.

• ILC : feasibility now established for interesting luminosity ( L of 2-4 1033 cm-2 s-1 ) 
at the Z peak. 

• 14 106 Z in one day : x3 LEP/exp
• To be compared with ~ 100 106 Z at 250 GeV, full sample.

LC specifics {



Calibrations: energy scales, efficiencies, etc
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• Running at the Z peak offers a standard candle for calibration of energy scales, 
reconstruction efficiencies, particle ID efficiencies, etc.

• LEP expts typically achieved uncertainties of 0.1% - 1% on tracking reco, 
lepton id, flavour tagging etc, jet energy calibration at 1-2%.

• At FCC, should be controlled to 10-4 with regular calib. runs at the Z peak

• Calibrations should anyway be controlled in-situ too

Example full simulation studies, at ILC 250 and CLIC [12], using Z + 𝛾 events 
and the constrained kinematics: 
- Photon energy scale from Z(μμ) + 𝛾 [13]

- Reconstruct E(𝛾 ) from the momenta of the 
muons and the angles of the muons and 𝛾

- Calibration: a few 10-5 to a few 10-4

- Jet energy scale from Z(jj) + 𝛾 [14]
- Reconstruct the jet energies from the 

angles only (of both jets and the 𝛾)
- Calibration to O( 10-4 )



Now a few examples of measurements…
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[ illustrating some areas where further work is needed ]



Measurement of the W mass (and width) from a threshold scan
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Sensitivity to mass and width is different at 
different √s: can optimize mass and width 
by choosing carefully the √s points  [15]. 

Lumi Collider ΔMW (stat.)
12 ab-1 FCC-ee 400 keV
0.5 ab-1 w
P = ( 90%, 60%)

ILC (not in 
baseline)

1100 keV
[16]

Key exp. systematics :
- √s : near threshold: ΔMW ≈ Δ(√s) / 2  
- Point-to-point normalisation uncertainties 

- lumi, signal efficiencies : a few 10-4

- Background: ΔMW ≈ 500 keV x ( Δσ / 1 fb )
- E.g. 4 jet channel: σ(bckgd) is ~ 200-300 fb
- Polarised : constrained from 4 (P-, P+) configurations. 
- Unpolarised : constrained from data below the WW threshold 

Syst < stat demanding. Need to find an optimal scan scenario which minimizes the 
background uncertainties thanks to correlations. 

σ indep. of the W 
width for 
√s ~ 162 GeV



Measurement of the W mass from final state reconstruction
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Both at threshold and at higher √s :
MW can be obtained from final state 
reconstruction. 
Several methods can be contemplated.

• esp. with precise knowledge of √s, 
does not have to rely only on hadronic 
masses (JES syst.) 

Example: Kinematic fit
• Exploit 4-momentum conservation: thanks to precise knowledge of √s

• Δ√s at FCC 240 GeV: yet to be improved to compete with the scan !
• Requires very good understanding of full error matrices of objects
• Effect of ISR and beamstrahlung ?

• Hadronic channel : uncertainties from WW → had modeling ?
• Controlled from precise measurements of frag. properties of  Z → qq

FCC: at threshold, precision may compete 
with scan – i.e. O(500 keV) - if systematic 
uncertainties are controlled [17].
ILC baseline : could allow a < 3 MeV 
measurement with 250 GeV dataset  [8].

Fast Simulation,
CLD



Precision meas. of EW couplings: sin2θeff from Ae
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• Polarized collider: Ae = ALR = ( σL – σR) / ( σL + σR). Robust. Dominant syst. 
from the polarisation measurement, measured in-situ thanks to both P+ and P- :

• Main uncertainty: Bhabha bckgd, measured in-situ.
• Should provide Δ(sin2θeff) =  2-3 10-6

• ILC 250, 2 ab-1: 80 M hadronic Z’s from radiative return: stat dominated:
• Stat error (rel) = 10-3, i.e. Δ(sin2θeff) ~ 2 10-5 (~ current / 10)

• Giga-Z : 3 109 hadronic Z’s,  dominated by systematics   [8]
• Precise meas. of √s is crucial: rel error = 1.3 10-4 x Δ√s / MeV
• Pol: 5 10-4 (rel) expected from σ(2f), i.e. Δ(sin2θeff) ~ 10-5

Fit of P(𝜏) vs cosθ𝜏 : Ae much less affected by syst. than A𝜏. 
• FCC: get Ae from the angular distrib. of the tau polarisation

At the Z pole: less in-situ constraints on pol (no WW) absent, i.e. larger impact of 
the polarimeter measurement ? Independent meas. useful - via P(𝜏) for example. 

A𝜏 more demanding: e.g. systematics on ECAL scale 
and 𝛾 misid to be studied. Focus on ρ𝜈 or 𝜏 → h𝜈 : avoid 
modelling uncertainties affecting the a1 channel.

NB: Such precisions on sin2θeff call for improved MZ, 𝛼QED(M2
z)  !!



Precision meas. of Z couplings: Rl, Rb and Rc
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1 / Rl = Γl / Γhad,  
Rb,c = Γb,c / Γhad

• Dominant systematic on Rl expected to come :
- from identification efficiencies with a few times the LEP statistics (ILC 250)
- from the determination of the acceptance at GigaZ / FCC 

Example, Rl at FCC: goal for ΔRl / Rl = 1-5 10-5 . Position of edge of the forward 
calorimeter, edge of tracking acceptance: must be known to O( 10 μm ).

- the fwd detector must be carefully designed 
- e.g. hermetic calo, precise pre-shower in front

- will need “asymmetric” selection as done for the luminosity measurement 

• Measurement of Rb,c: large statistics + improved VTX detectors w.r.t LEP / SLD 
allows to focus on double-tagged events. Expected systematics:

- Hemisphere correlations: much less an issue than at LEP thanks to very small 
beam-spot. Further minimized with a tagger whose efficiency is independent on 
the b kinematics.

- Large control samples to study effect of gluon splittings
- Selections that minimize QCD effects
Uncertainties O(10x – 100x) better than current ones within reach:   [8, 18]

ΔRb / Rb ~ ( 0.5 – 1 ) . 10-4 at FCC,  ( 7 – 10 ). 10-4 at GigaZ / LC



Conclusions
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• Strategies are being developed to control luminosity, √s, polarisation, calibrations, 
alignment at a level such such that these should not limit the experimental 
accuracy of the majority of measurements. Still lots of work ahead, e.g. :
o Improving further on the precision on √s is worth the effort
o Reaching 10-4 on the Luminosity with Bhabha is a real challenge: 

alternative? Can we use ee → 𝛾𝛾 events ? (acceptance, ee background)

• Systematic uncertainties related to background subtraction: must be studied 
separately for each analysis
o In many cases, scale down with the increased statistics (control samples, in-

situ bckgd determinations). How low can we go ?

• Kinematic fits can lead to reduced uncertainties. Full potential to be understood 
and quantified - can serve several analyses

• Systematic uncertainties vs detector design :
o Unprecedented requirements e.g. on :

• The determination of the acceptances at GigaZ / TeraZ
• The stability of the momentum reconstruction and magnetic field

o Importance of redundancy
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Example of Higgs measurements: MH
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Extracted from an analysis of the distribution of the recoil mass 

ΔMH ~ 6 MeV

ΔMH ~ 14 MeV ΔMH ~ 100 MeV

Increasing tail of Mrec distribution 
with increasing beamstrahlung !

Better precision (ΓH or even better ! ) desirable in 
view of a potential run at 125 GeV at FCC.
- Δ(√s) of 1-2 MeV and uncertainty on BES 

adequate 
- Optimize the resolution of Z → ee channel and 

use exclusive modes, including Z → had., 
exploiting kinem. constraints: many systematic 
studies to be carried out !

CLIC: best prospect 
from exclusive H  → bb 
reco. Systematics from 
b-jet energy scale is 
comparable to the stat. 
uncertainty (40 MeV).

CEPC [19]
ILC [20] CLIC [10]



Precision meas. of the EW couplings:  AFB
b
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• Charge confusion + Contamination from 
charm and light: scale with the statistics, as 
can be reduced from large control samples.

• QCD corrections: 3 10-4

can be reduced by O(10) with 
acollinearity cuts  [22]

Additional challenge w.r.t. Rb : need to 
determine the charge of the b

[ sin2θeff ]

moreover, with huge stat: can use exclusive 
B+ modes to largely get rid of it. 

Migrations due to 
charge mis-ID can 
be corrected

At Z peak: ΔAFB
b : 0.0016 (stat) ± 0.0007 (syst).  

Contributions to this systematics :

→ vertex charge, lepton charge, also Kaon 
charge very powerful ⇒ particle ID  [21]



The proposed “low energies” Electroweak / Higgs / Top factories
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Alternative measurement of the luminosity : ee ⟶ 𝛾𝛾 at large angles
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- Pure QED process (at LO)
- Well controlled theoretically

Much smaller σ than small angle Bhabhas, but
statistics still adequate for a precision of 10-4

Example: [23]
θmin = 20 deg

Huge contamination
from e+e- ⟶ e+e-

before any id cut
( 20 - 100x signal )

Need a good control of the e/𝛾 separation (𝛾 conversions, e ⟶ 𝛾 fake rate). 

Worth to take a closer look – systematics completely different from small angle 
Bhabhas (and no beam induced effect ! )

e.g. with 𝜀 ( 𝛾 id ) = 99% and fake(e ⟶ 𝛾) = 1%, would need to know the 𝛾 id 
inefficiency to the % level and the fake rate to a few per-mille. 


