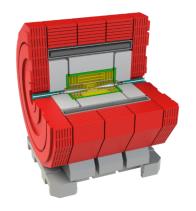
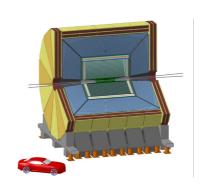
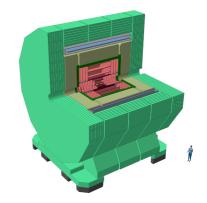

Physics performance

Philipp Roloff (CERN)

18/06/2021 ECFA PED-Higgs kick-off meeting

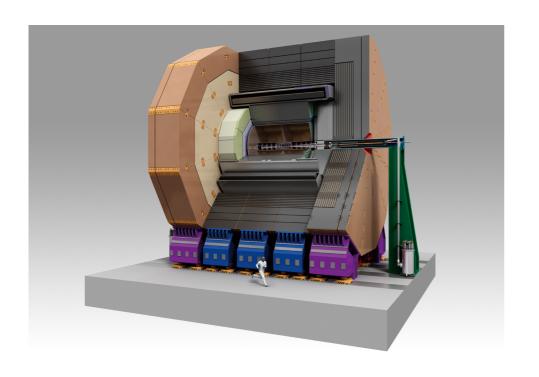


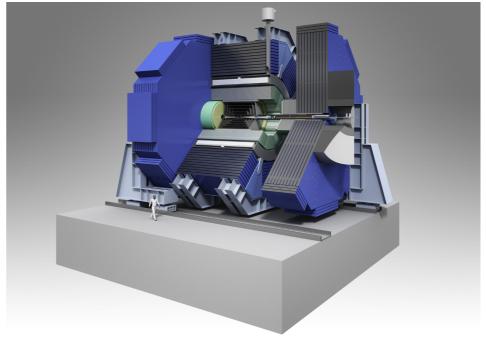




Outline:

- Tracking
- Particle flow analysis
- Jet clustering
- Kinematic fits
- Flavour tagging
- Particle ID




Reminder: ILC detector concepts

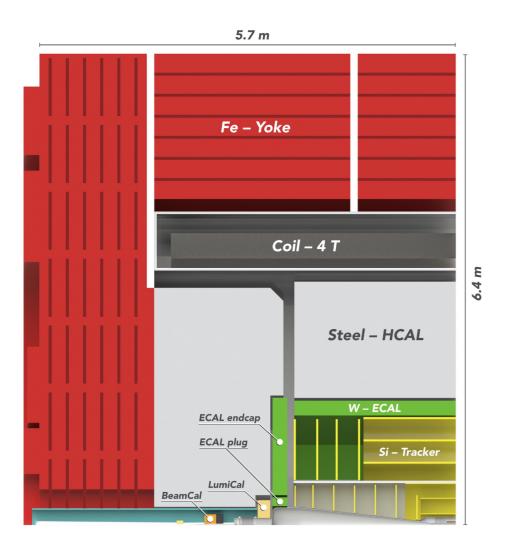
Designed for Particle Flow Calorimetry:

- High granularity calorimeters (ECAL and HCAL) inside solenoid
- Low mass trackers → reduce interactions / conversions

ILD (International Large Detector):

• TPC+silicon envelope, radius: 1.8 m

• B-field: 3.5 T

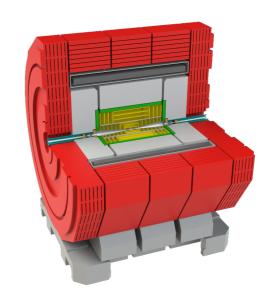

(small option: 1.46 m / 4 T recently studied)

SiD (Silicon Detector):

• Silicon tracking, radius: 1.2 m

• B-field: 5 T

Reminder: CLIC detector concept

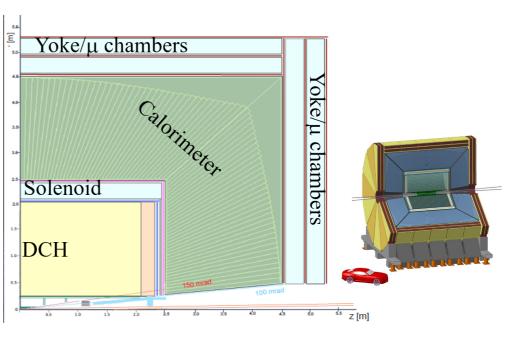


CLICdet basic characteristics:

- B-field: 4 T
- Vertex detector with 3 double layers
- Silicon tracking system (1.5 m radius)
- ECAL with 40 layers (22 X₀)
- HCAL with 60 layers (7.5 λ)

Precise timing:

- ≈ 10 ns hit time-stamping in tracking
- 1 ns accuracy for calorimeter hits



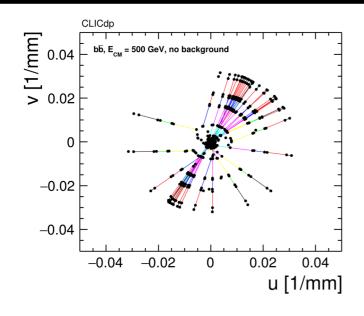
CLICdp-Note-2017-001 arXiv:1812.07337

Reminder: FCC-ee detector designs

CLD concept (inspired by CLICdet):

- Smaller magnetic field (limited by luminosity goal): 2 T
- Larger tracker radius (2.15 m) to keep similar momentum resolution
- Lower $\sqrt{s} \rightarrow HCAL$ less deep

IDEA detector concept:

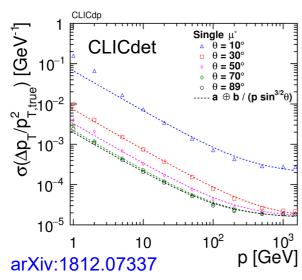

- B-field: 2 T
- Vertex detector: 5 MAPS layers
- Drift chamber with PID, radius: 2 m, 112 layers
- → low material budget
- Double read-out calorimetry
- Instrumented return yoke

arXiv:1911.12230

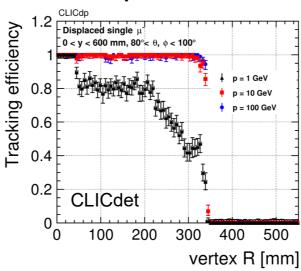
Introduction: physics performance

- A set of common tools for particle flow analysis, jet clustering, kinematic fits, and flavour tagging has been developed for linear collider detector studies in full simulation → see talk by Daniel Jeans on simulations
- These were used for the performance evaluation and optimisation of the ILD, SiD, CLICdet, CLD detectors → results are considered conservative as further improvement possible in many cases
- The physics potential of FCC-ee for Higgs and top physics was established (directly or indirectly) with linear collider full simulations
- Physics performance of IDEA studied using stand-alone simulations of various detector components, integration of full detector ongoing \rightarrow see talk by Daniel Jeans on simulations
- In the future even more exchange of software tools through Key4hep → see talk by Gerado Ganis (the existing e⁺e⁻ algorithms are being adapted or ported)

Tracking in full simulation: silicon

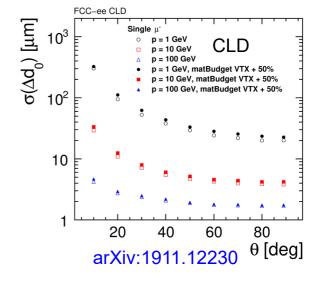

Example: "Conformal tracking"

→ Cellular automaton in conformal space for track finding used in CLICdet and CLD studies

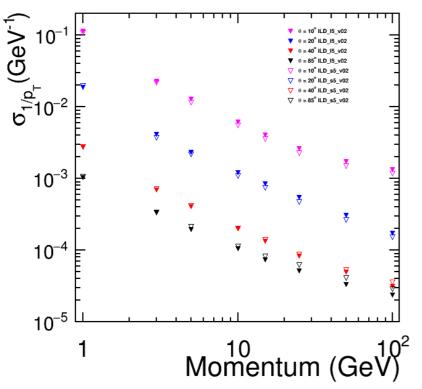

$$u = x / (x^2 + y^2)$$

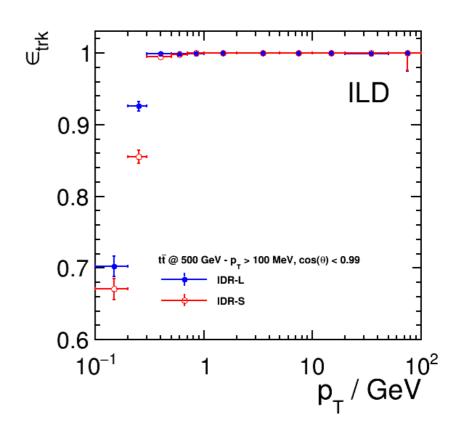
 $v = y / (x^2 + y^2)$

Nucl. Inst. Meth. A 956, 163304 (2020)


Momentum resolution

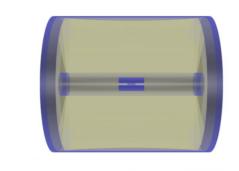
Displaced tracks

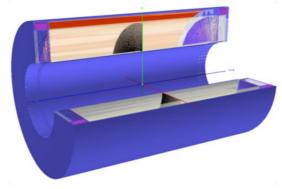


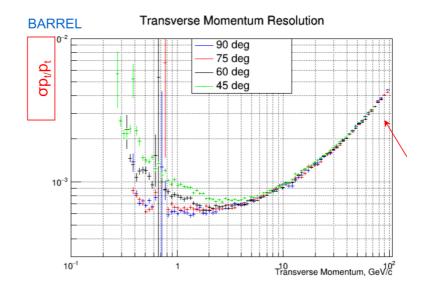

Detector optimisation

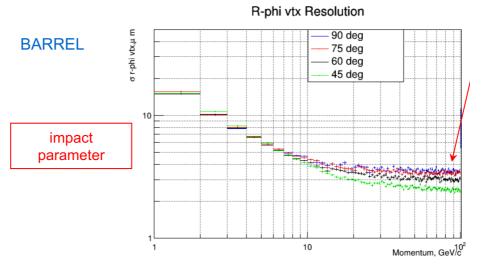
Tracking in full simulation: ILD

Momentum Resolution


- **Momentum resolution:** larger detector slightly better in the barrel, worse in the forward (due to the magnetic field)
- Efficiency in tt events: larger detector better at low momentum (also due to the magnetic field)


arXiv:2003.01116


Tracking for the IDEA drift chamber


Stand-alone Geant4 simulation:

- Detailed description of drift chamber
- Vertex detector and Si-wrapper simulated as simple layers

Drift chamber + vertex detector, single muons, no beam-induced background

N. De Filippis et al., FCC software meeting, 11/12/2020

Tracking: future usage of ACTS

Potential to exploit functionality provided in the framework of ACTS also for Higgs factory studies (e.g. to increase speed)

- ACTS aims to provide a toolkit for assembling a track reconstruction
- Current modules available:
 - Event Data Model (including time parameterisation)
 - Geometry
 - Propagation through all fields (Runge-Kutta-Nystroem integration)
 - Kalman Filter (KF) for track fitting
 - Combinatorial Kalman Filter (CKF) for track finding
 - Seeding
 - Primary vertex reconstruction
- In development:
 - Gaussian Sum Filter (GSF, electron reconstruction)
 - Global Chi2 Fitter (GX2F)
 - Secondary vertex reconstruction
 - Support for TPC through global KF formulation and GX2F
- R&D lines:
 - o Parallelization (GPUs, ...)
 - Machine Learning (Graph networks for track finding & vertexing, hashing, ...)

Andreas Salzburger

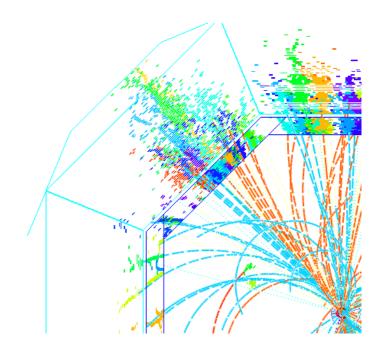
Particle flow calorimetry

Typical jet composition:

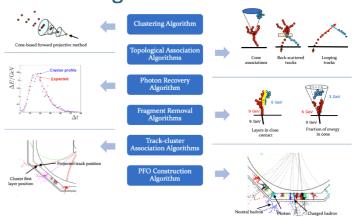
- 60% charged particles
 - 30% photons
- 10% neutral hadrons

Always use the best available measurement:

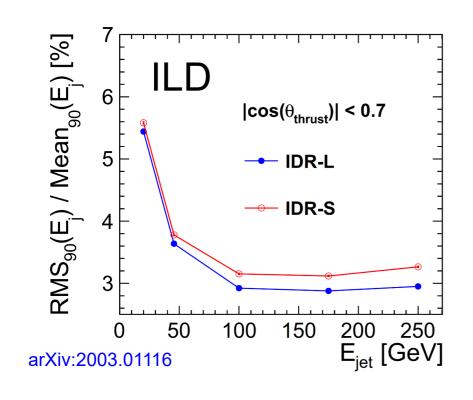
- charged particles → tracking detectors:
 - photons → ECAL:
 - neutrals → HCAL:

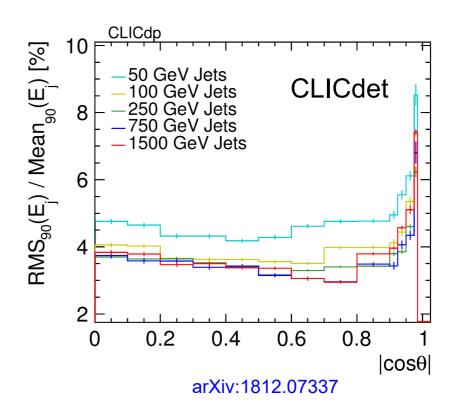

Hardware and software!

- PandoraPFA is the de facto standard used for the ILD / SiD / CLICdet / CLD studies
- → Performance results on the following slides
- → Has been crucial for detector optimisation


NIM **A 611**, 25 (2009) NIM **A 700**, 153 (2013) EPJ **C 75**, 439 (2015)

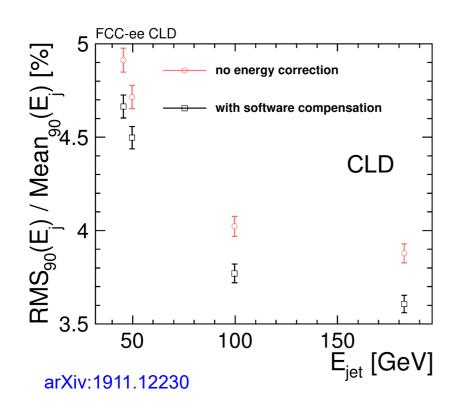
- Alternatives: Arbor (CEPC), April (ILD SDHCal)
- → Provide possibility to cross check

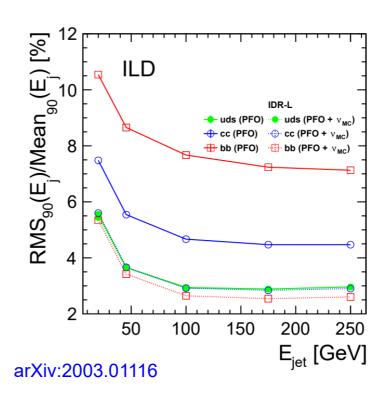

arXiv:1403.4784



Pandora Algorithms

PandoraPFA: basic performance

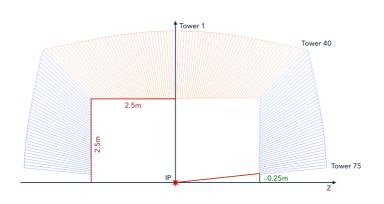




Jet energy resolution in di-jet events:

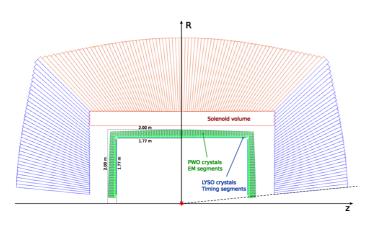
- Jet energy resolution requirement achieved (except in the very forward direction)
- Some differences in performance between the different detector parameters visible

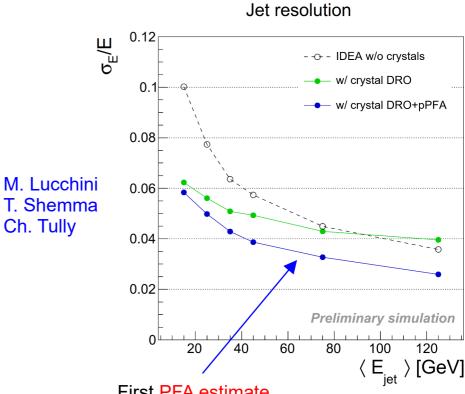
PandoraPFA: a few more details



- Sizeable improvement from software compensation: use local energy density to discriminate electromagnetic and purely hadronic sub-showers within hadron showers
- Heavy-quark jets are much more difficult due to semi-leptonic decays
 → Much room for improvement (e.g. estimate neutrino momentum from leptons & secondary vertices, mass constrained fits of B-/D-decay chains, ...)

Towards PFA with the IDEA detector


Stand-alone Geant4 simulations of two variants:


1.) <u>Dual readout:</u> Cherenkov and scintillation signals

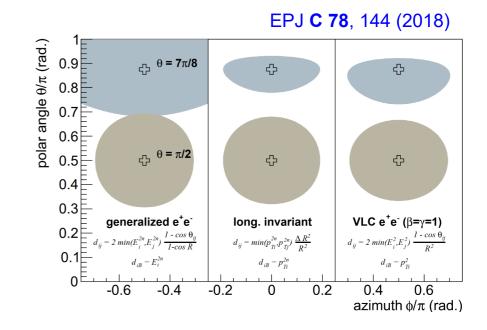
2.) Dual readout + crystal ECAL:

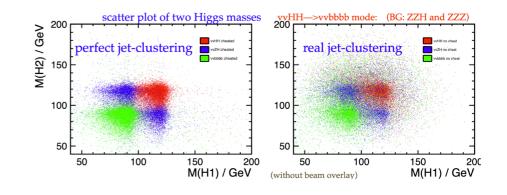
- Electromagnetic resolution from PbWO crystals inside solenoid $\approx 3\%$ / \sqrt{E}
- \rightarrow Important for $\pi^0 \rightarrow \gamma \gamma$ reconstruction

First PFA estimate (using MC information for tracking and photon ID)

NB: τ -lepton identification and π^0/γ separation studied using machine learning for the IDEA dual readout calorimeter

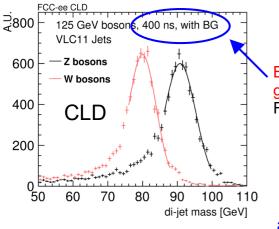
L. Pezzotti, IDEA collaboration meeting 2021

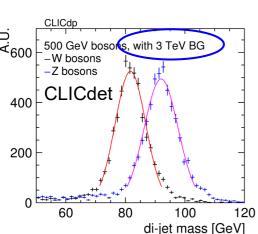

13


18/06/2021 Philipp Roloff Physics performance

Jet clustering algorithms

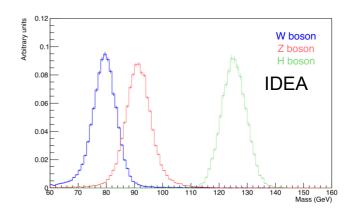
Additional challenges compared to LEP / SLC:

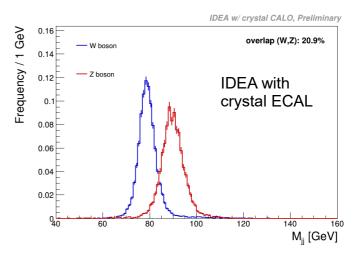

- Beam-induced backgrounds: In the forward direction, modest compared to I HC environment
- → Retain exclusive clustering with k_t algorithm (best invariant mass resolution for hadronic resonances)
- → Use appropriate beam distance for robustness against background where needed
- Complex multi-jet final states and harder gluon emissions at higher energies:
- e.g. Higgs self-coupling, $e^+e^- \rightarrow t\bar{t}$, $e^+e^- \rightarrow ttH$, ...
- → Impact of confusion in the jet clustering non-negligible
- → Interesting application for machine learning



Separation of hadronic W/Z decays

Full simulation


Beam-induced background for 365 GeV FCC-ee



arXiv:1911.12230 arXiv:1812.07337

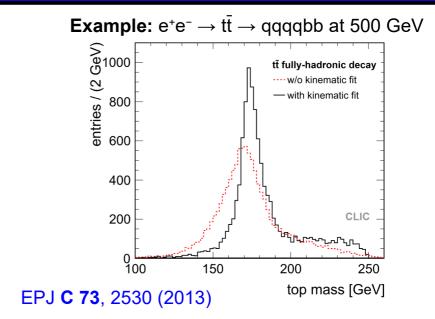
- → Separation of hadronic W and Z decays on
- 2 2.5σ level over a very large energy range
- → Particle flow reconstruction and jet clustering robust against experimental conditions

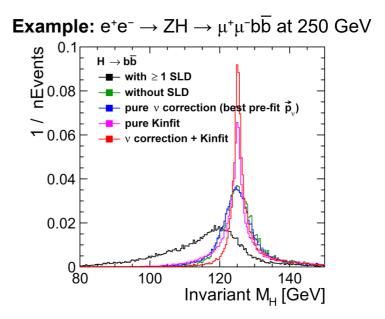
Stand-alone calorimeter simulation

- E(W/Z) = 120 GeV, no semileptonic decays
- → Very promising, to be studied in full simulation

Kinematic fitting

- Well established technique for s-channel processes, MarlinKinFit used for several linear collider physics studies:
 e⁺e⁻ → W⁺W⁻, tt̄, ZHH, ...
- Important to include energy loss from ISR and Beamstrahlung above threshold

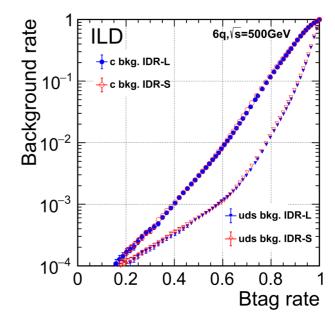

NIM A 624, 184 (2010)

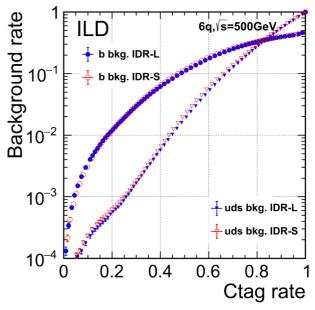

- Recent / ongoing developments:
- Correction for semileptonic decays in c-/b-jets → important for Higgs physics
- Jet error estimation from individual particle flow objects

DESY-THESIS-2016-027 DESY-THESIS-2017-045 Y. Radkhorrami, LCWS 2021

 Kinematic fitting for W mass and width extraction studied also for FCC-ee

CERN-THESIS-2019-291



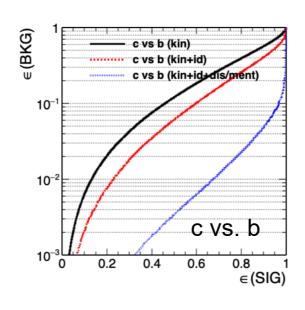


Flavour tagging

- Common tool: LCFIPlus (originally developed for the linear collider studies)
- → Includes vertex finding, jet clustering and flavour tagging (using BDTs from TMVA)
- High granularity and compact geometry of vertex detectors well suited for charm tagging (e.g. for H → cc)

Example: b-and_c-tagging performance for $e^+e^- \rightarrow qqqqqq$ events in the ILD detector at $\sqrt{s} = 500$ GeV



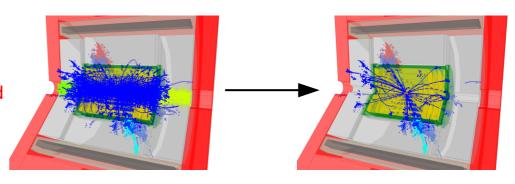

arXiv:2003.01116

Nucl. Inst. Meth. A 808, 109 (2016)

Flavour tagging: recent developments

- Possible improvements to LCFIPlus: faster vertex finding, refined treatment of material, ...
- Exploration of additional possibilities: strange-quark tagging, ...
- Several ongoing studies introducing advanced machine learning techniques to flavour tagging
- → Profiting from work for LHC in this area, example:

Advanced flavour tagging:


- Algorithm based on ParticleNet
- First focus on Higgs physics: H→cc, H→gg, ...
- Fast simulation of the IDEA and CLD detectors (multiple scattering, but no secondary interactions)
- → First results very promising

L. Gouskos, 4th FCC Physics and Experiments Workshop

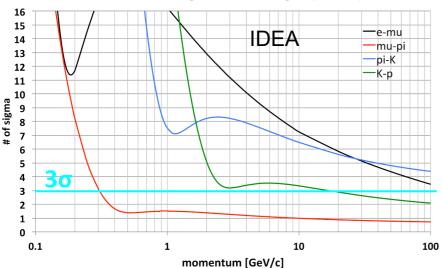
Usage of timing information

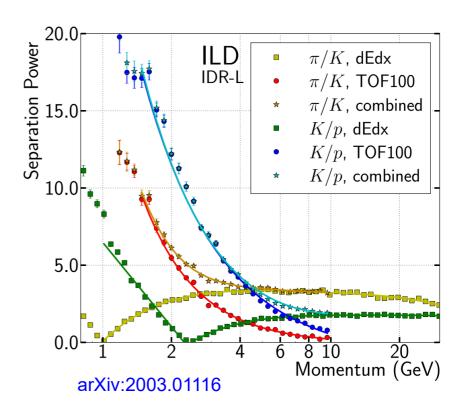
Timing with O(1) ns resolution:

- Assumed for CLIC to suppress pile-up from beam-induced background (by p_{T} -dependent timing cuts in individual reconstructed particles)
- Could potentially be exploited for other collider options,
 e.g. to suppress backscattered fragments
- → Benefit needs to be studied

 $e^+e^- \to t\bar t$ at 3 TeV with background from $\gamma\gamma \to hadrons$ overlaid

Timing with ≈10 ps resolution:


- Recent interest triggered by recent developments for HL-LHC and other facilities
- Particle identification using time-of-flight:
- e.g. 3-sigma K/ π separation up to 5 GeV for 10 ps measurement at R \approx 2 m
- Identification of heavy long-lived particles, emerging jets, ...
- Full 5D particle flow to reduce confusion (e.g. from "late" neutrons, improved photon position resolution)
- → Need detailed simulation for all of these use cases


Particle ID

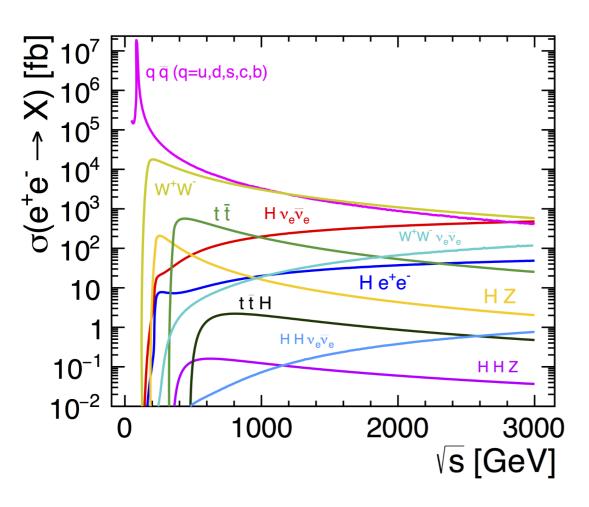
- dE/dx, dN/dx benefit from large gaseous tracking
- Timing can provide $\pi/K(K/p)$ -separation around 1(2) GeV where dE/dx or dN/dx is not sensitive
- No study yet of dE/dx for silicon layers
- Could use PID in track / vertex re-fitting to improve momentum estimate

F. Grancagnolo, IAS HEP 2021 (analytic estimate)

- Crucial for flavour physics at the Z-pole
- At higher energies helpful for b- and c-jet charge identification (via charged Kaons) for A_{FB} in $e^+e^- \to t\bar{t}/b\bar{b}/c\bar{c}$ events
- Aids the flavour tagging

18/06/2021 Philipp Roloff Ph

Summary and conclusions


- Sophisticated reconstruction and high-level analysis tools are needed to demonstrate the physics potential of detector concepts for future Higgs factories
- The same software tools are crucial to optimise the detectors and provide input to the hardware studies
- The sharing of common tools among different collider options has already been essential

 → this will be intensified further through Key4hep
- New ideas, input and contributions from LHC physicists, machine learning experts, theorists are always welcome!

Thank you!

Backup slides

Important processes in e⁺e⁻ collisions

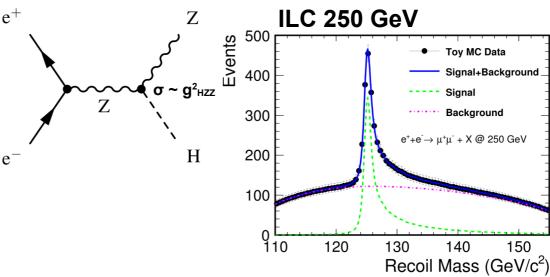
→ Wide range of physics opportunities, best explored in several energy stages

- 2-fermion production, e.g. qq
- W-boson pair production (WW)
- Higgsstrahlung (HZ):
 best at 240 380 GeV → "Higgs factory"
- tt threshold: 350 GeV
- tt continuum: ≥ 365 GeV
- Double Higgsstrahlung (HHZ): cross section maximum ≈ 600 GeV
- Single and double Higgs in WW fusion (Hv_ev_e and HHv_ev_e): cross section rises with energy
 - + Direct searches for new particles: highest possible energy

18/06/2021 Philipp Roloff Physics performance

Higgs factory: e⁺e[−] → ZH

Higgsstrahlung at e⁺e⁻ colliders:

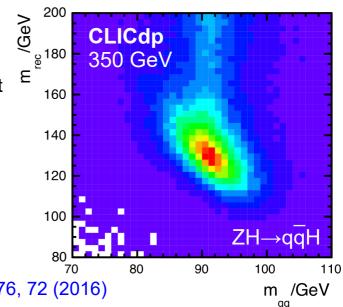

HZ events can be identified from the Z recoil mas

→ Model-independent measurement of

the σ_{ZH} and the Higgs mass

$$m_{recoil}^2 = (\sqrt{s} + E_z)^2 - (\vec{p}_z)^2$$

Known at lepton collider

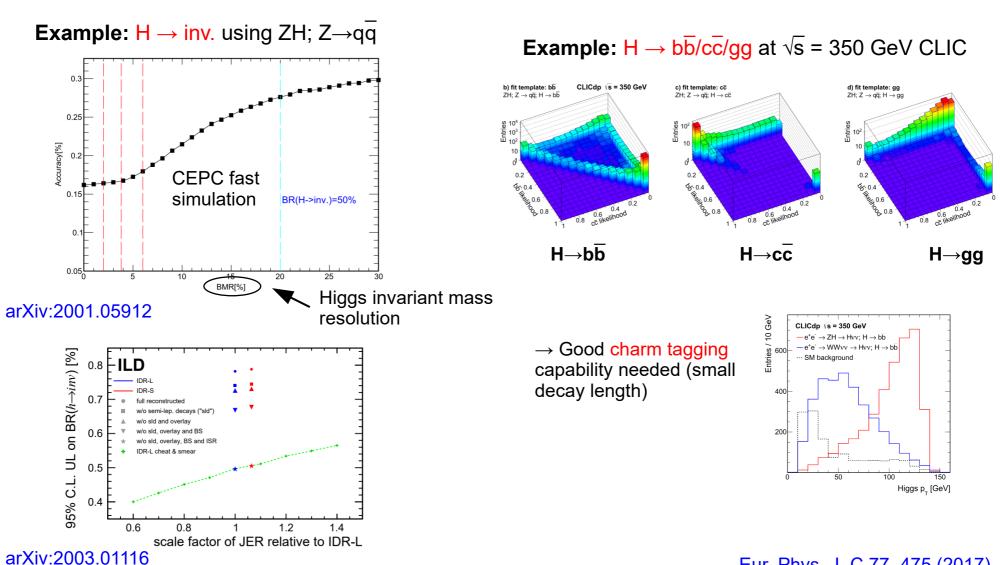

Phys. Rev. D 94, 113002 (2016)

$Z \rightarrow e^+e^-$ or $\mu^+\mu^-$:

- Best precision at 240-250 GeV (ILC / FCC-ee / CEPC)
- Cross section at maximum, impact of beam energy spectrum & ISR smallest
- Relevant detector parameter: tracking momentum resolution

$\mathbf{Z} \rightarrow \mathbf{q}\mathbf{q}$:

- Best precision at 350-380 GeV (ILC / FCC-ee / CLIC)
- Main backgrounds: WW / single-W / ZZ production
- Relevant detector parameter: jet energy resolution



Eur. Phys. J. C 76, 72 (2016)

qq

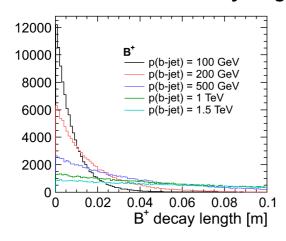
Higgs factory: other measurements

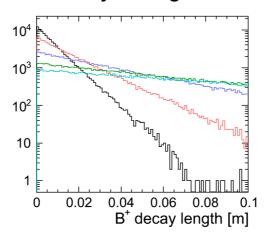
Exploration of all possible Higgs decay modes (including non-SM decays)

Eur. Phys. J. C 77, 475 (2017)

What about very high energies?

1. The forward detector region is increasingly important

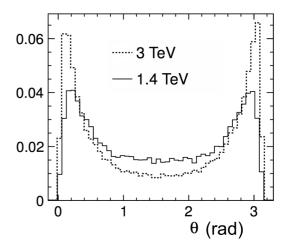

Cross sections for VBF processes (e.g. single or double Higgs production) rise with energy


2. Boosted object reconstruction is crucial

The indirect sensitivity of 2→2 scattering processes rises very strongly with energy despite falling cross sections:

- arXiv:1911.02523 • $e^+e^- \rightarrow W^+W^-$ and ZH: tagging of boosted W/Z/H bosons
- e⁺e⁻ → tt̄: boosted top tagging JHEP 11, 003 (2019)
- e⁺e⁻ → bb: large secondary vertex decay lengths, very collimated decay b- and c-hadron decay products

B⁺ meson decay length for different b-jet energies



Higgs polar angle in e⁺e⁻→ Hvv events 1/σ dσ/dθ(H) 20.03 $-e^+e^- \rightarrow Hv_e\overline{v}_e$, $\sqrt{s} = 350 \text{ GeV}$ $-e^+e^- \rightarrow Hv_e\overline{v}_e$, $\sqrt{s} = 1.4 \text{ TeV}$ $e^+e^- \rightarrow Hv_e\overline{v}_e$, $\sqrt{s} = 3 \text{ TeV}$ 0.02 0.01

100

 $\theta(H)$ [deg]

Philipp Roloff Physics performance

Physics motivations detector requirements (1)

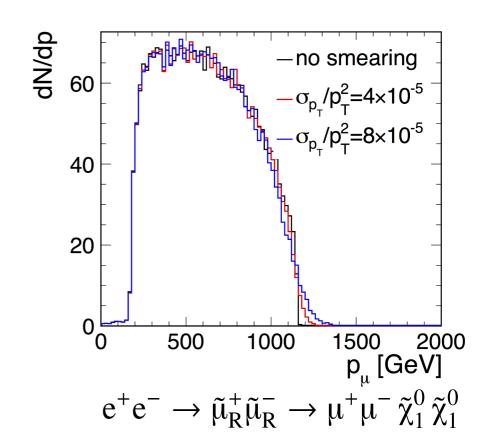
Momentum resolution

(e.g. Higgs recoil mass, $H \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 - 5 \times 10^{-5} GeV^{-1}$$

Jet energy resolution

(W/Z/H separation, e.g. σ_{7H} , H \rightarrow inv.)


$$\frac{\sigma(E)}{E} \sim 3 - 5\% \text{ for } E \ge 50 \text{ GeV}$$

Impact parameter resolution

(b/c tagging, e.g. Higgs couplings)

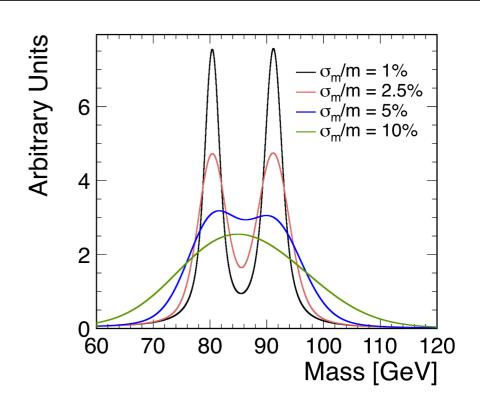
$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}$$
, $a \approx 5 \mu m$, $b \approx 10 - 15 \mu m$

Lepton identification, very forward electron tagging

$$5 \,\mu\,m$$
, $b \approx 10 - 15 \,\mu\,m$

Physics motivations detector requirements (2)

Momentum resolution


(e.g. Higgs recoil mass, $H \rightarrow \mu^{+}\mu^{-}$, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 - 5 \times 10^{-5} \, GeV^{-1}$$

Jet energy resolution

(W/Z/H separation, e.g. σ_{ZH} , H \rightarrow inv.)

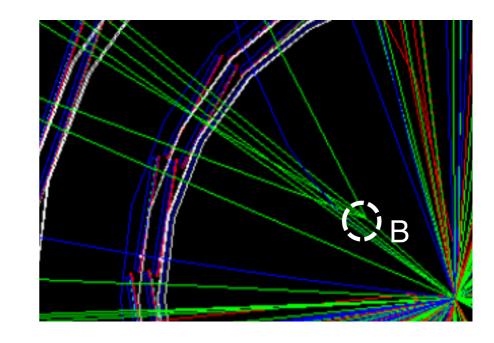
$$\frac{\sigma(E)}{E}$$
 $\sim 3-5\%$ for $E \ge 50$ GeV

Impact parameter resolution

(b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2 \sin^3 \theta)}$$
, $a \approx 5 \mu m$, $b \approx 10 - 15 \mu m$

Lepton identification, very forward electron tagging

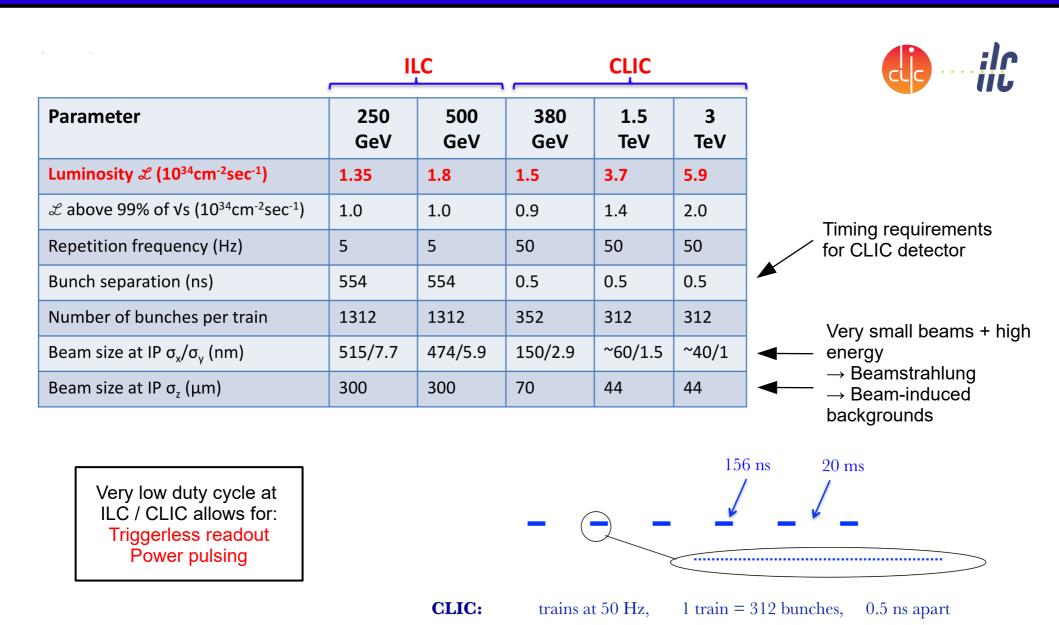

Physics motivations detector requirements (3)

Momentum resolution (e.g. Higgs recoil mass, H → μ⁺μ⁻, leptons from BSM processes)

$$\frac{\sigma(p_T)}{p_T^2} \sim 2 - 5 \times 10^{-5} \, GeV^{-1}$$

• Jet energy resolution (W/Z/H separation, e.g. σ_{ZH} , H \rightarrow inv.)

$$\frac{\sigma(E)}{E}$$
 \sim 3 – 5% for $E \ge 50 \, GeV$


Impact parameter resolution
 (b/c tagging, e.g. Higgs couplings)

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot GeV^2/(p^2\sin^3\theta)}, a \approx 5 \,\mu\,m, b \approx 10 - 15 \,\mu\,m \Rightarrow \sigma_{SP} \approx 3 \,\mu\,m$$

Lepton identification, very forward electron tagging

For the considered

Linear collider beam parameters

18/06/2021

Circular collider beam parameters

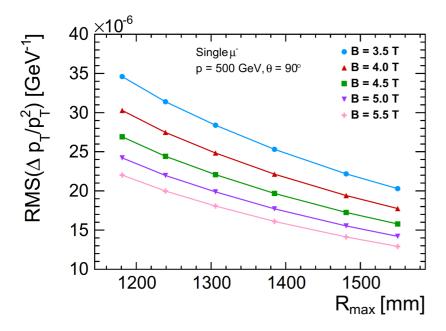
CEP C	FCC-ee			CEPC	
	Z	Higgs	ttbar	Z (2T)	Higgs
√S [GeV]	91.2	240	365	91.2	240
Luminosity per IP (10 ³⁴ cm ⁻² sec ⁻¹)	230	8.5	1.7	32	1.5
no. of bunches / beam	16640	393	48	12000	242
Bunch crossing separation (ns)	20	994	3000	25	680
Beam size at IP σ_x/σ_y (µm)				6.0/0.04	20.9/0.06
Bunch length (SR / BS) (mm) Beam size at IP σ_z (mm)	3.5 / 12.1	3.3 / 5.3	2.0 / 2.5	8.5	4.4

Example: 3 BX / 10 µs at 365 GeV FCC-ee

• Impact of beam-induced background to be mitigated through MDI and detector design (e⁺e⁻ pairs dominant, yy → hadrons and synchrotron radiation small in the detectors)

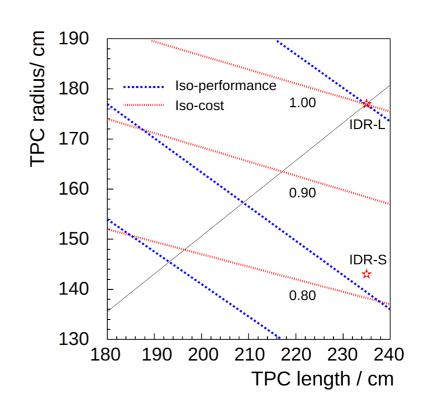
Tracking detectors need to achieve good resolution without power pulsing

For reference: key detector parameters


	ILD (IDR_L/IDR_S)	SiD	CLICdet	CLD	IDEA	CEPC baseline
Vertex technology	Silicon	Silicon	Silicon	Silicon	Silicon	Silicon
Vertex inner radius	1.6 cm	1.4 cm	3.1 cm	1.75 cm	1.7 cm	1.6 cm
Tracker technololy	TPC + Silicon	Silicon	Silicon	Silicon	Drift chamber + Si	TPC + Silicon
Tracker outer radius	1.77 m / 1.43 m	1.22 m	1.5 m	2.1 m	2.0 m	1.8 m
Calorimeter	PFA	PFA	PFA	PFA	Dual readout	PFA
(ECAL) inner radius	1.8 m / 1.46 m	1.27 m	1.5 m	2.15 m	2.5 m	1.8 m
ECAL technology	Silicon	Silicon	Silicon	Silicon	-	Silicon
ECAL absorber	W	W	W	W	-	W
ECAL thickness	24 X ₀ (30 layers)	26 X ₀ (30 layers)	22 X ₀ (40 layers)	22 X ₀ (40 layers)	-	24 X ₀ (30 layers)
HCAL technology	Scintillator	Scintillator	Scintillator	Scintillator	-	RPC
HCAL absorber	Fe	Fe	Fe	Fe	-	Fe
HCAL thickness	5.9 λ _ι (48 layers)	4.5 λ _ι	7.5 λ _ι (60 layers)	5.5 λ _ι (44 layers)	8 λ _ι (2 m)	4.9 λ _ι (40 layers)
(HCAL) outer radius	3.34 m / 3.0 m	2.5 m	3.25 m	3.57 m	≤4.5 m	3.3 m
Solenoid field	3.5 T / 4 T	5 T	4 T	2 T	2 T	3 T
Solenoid length	7.9 m	6.1 m	8.3 m	7.4 m	6.0 m	8.0 m
Sol. inner radius	3.42 m / 3.08 m	2.6 m	3.5 m	3.7 m	2.1 m	3.4 m

Majority of concepts based on PFA calorimetry → comparison of different choices can provide additional insight, e.g. IDR_S (TPC) vs. CLICdet (full silicon tracking), but similar magnetic field and tracker radius

18/06/2021 Philipp Roloff

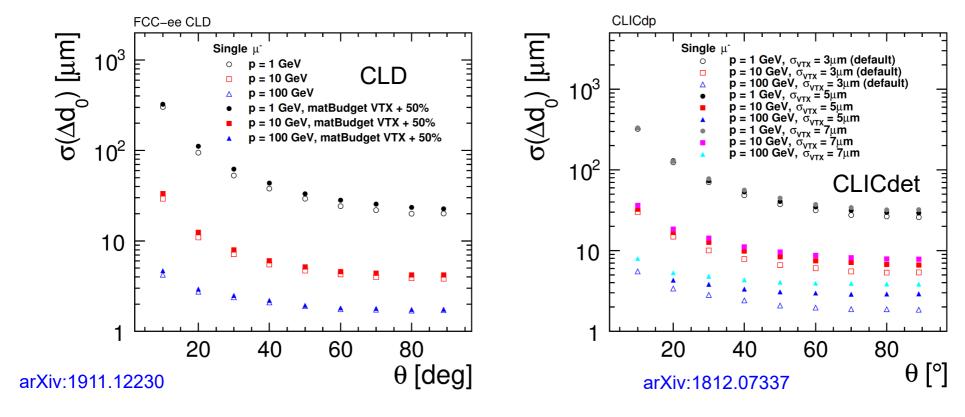

Tracker size

Example: CLICdet

- CLICdet: B = 4T, R_{max} = 1.5 m
- Choice of B-field and tracker radius also influenced by: PFA performance studies, occupancy in the vertex detector, technical considerations

Example: ILD

- Physics performance combines several tracking related quantities
- Magnetic field increased from 3.5 T (IDR-L) to 4 T (IDR-S) to compensate smaller TPC radius


CLICdp-Note-2017-001

arXiv:2003.01116

Tracking: detector optimisation example

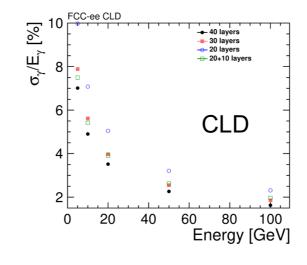
Modifications to the CLICdet and CLD vertex detectors:

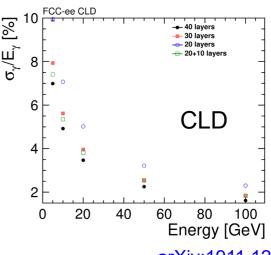
- Impact parameter resolution with increased material (+50%)
- Worse single point resolution (3 μ m \rightarrow 5/7 μ m)

- → Small effect of increased material budget (needs refinement of flavour tagging algorithm due to increased number of secondary interactions)
- ightarrow The single point resolution has a large impact on the impact parameter resolution at high p $_{\scriptscriptstyle T}$

Similar conclusions for CEPC baseline detector CEPC CDR, Volume 2

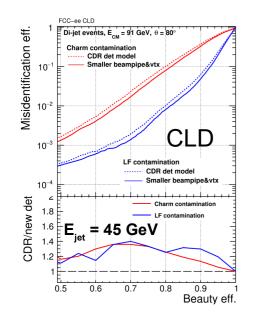
PFA: photon energy resolution


- Fine-grained sampling calorimeters with silicon or scintillator technology
- Tungsten absorber to minimise Molière radius and separate showers
- Increased number of layers gives better photon energy resolution (at additional cost)
- No impact on jet energy resolution


Example: ECAL options with different W layer thickness and 22 X_o overall in CLD

Layer structure	Thickness tungsten alloy [mm]	Total thickness per layer [mm]
40 uniform	1.9	5.05
30 uniform	2.62	5.77
20 uniform	3.15	7.19
20 thin + 10 thick	1.9 + 3.8	5.05 + 6.95

Layer structure	$ JER [\%] $ $ \sqrt{s} = 365 \text{ GeV} $	$ JER [\%] $ $ \sqrt{s} = 91.2 \text{ GeV} $
40 uniform	3.62 ± 0.05	4.52 ± 0.06
30 uniform	3.72 ± 0.05	4.45 ± 0.06
20 uniform	3.78 ± 0.05	4.82 ± 0.07
20 thin + 10 thick	3.67 ± 0.05	4.56 ± 0.06

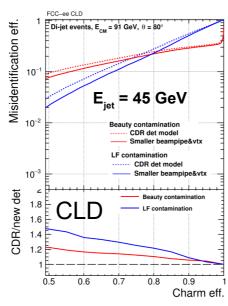

→ Jet energy resolution almost identical for the 4 ECAL options

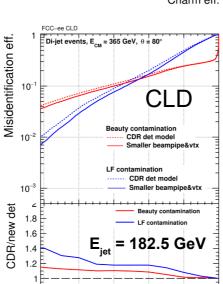
arXiv:1911.12230

Example: smaller beam pipe in CLD

Di-jet events, $E_{CM} = 365 \text{ GeV}, \theta = 80$

CI D

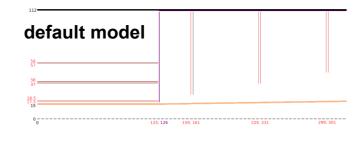

CDR det model


8.0

Beauty eff.

E., = 182.5 GeV

CDR det mode


0.7

8.0

Charm eff.

- Alternative FCC-ee interaction region with smaller beam pipe radius
- Innermost barrel layer moved from 17.5 mm to 12.5 mm, outer radius unchanged
- · Vertex disks unchanged

Vertex barrel layer	Radius for the default model [mm]	Radius for the new model [mm]
Layer 1	17.5	12.5
Layer 2	18.5	13.5
Layer 3	37	35
Layer 4	38	36
Layer 5	57	57
Layer 6	58	58

- $e^+e^- \rightarrow q\bar{q}$ events with $\theta(q) = 80^\circ$
- "Truth" tracking
- → Visible improvement for charm at both energies and beauty at E_{jet} = 45 GeV (most decays before layer 1)

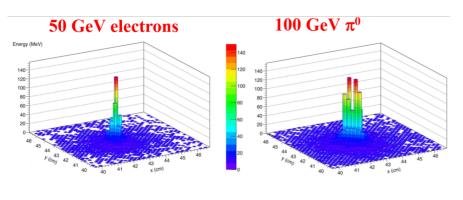
 arXiv:1911.12230

Misidentification eff.

10

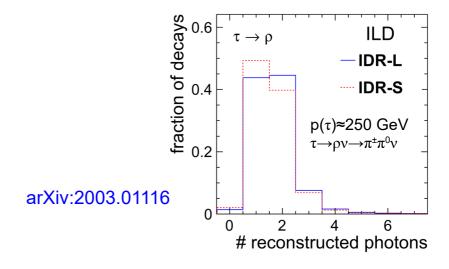
10

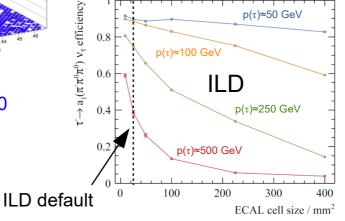
1.8

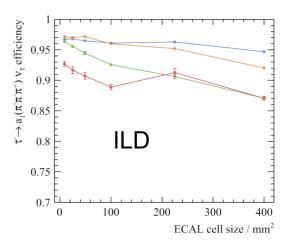

CDR/new det

Hadronic τ-lepton decays

Decay modes with π^0 particularly challenging, e.g. for τ -polarisation measurement


Relevant detector parameters:


- Calorimeter inner radius
- (ECAL) transverse granularity



F. Bedeschi, FCC phys. & exp. workshop 2020

→ Defines calorimeter granularity for IDEA detector

CERN-THESIS-2017-244

18/06/2021