Detector Simulation

Fast Sim and Full Sim etc.

PED-Higgs kick-off meeting
18 June, 2021

Daniel Jeans / KEK
Motivation

Full-sim

Fast-sim
inter-linked tasks for detector simulations

@ future experiments

- investigation of facility's physics potential including new reco techniques
- comparison of different
 - detector designs
 - sub-detector technologies
- understanding of detector prototypes e.g. in test beam
- seamless transition to simulation of real detector

different levels of simulation accuracy required
different levels of detail required for these tasks

Fast simulation

parameterisation [more or less sophisticated] of
detector acceptance and response to particles
[particle type, E, θ, ϕ, …]

Full simulation

track each particle through detailed detector model interactions, decays, energy deposits
→ digitisation → detector signals
→ event reconstruction

Hybrid approaches

increase speed by simplifying where possible,
while preserving accuracy where needed
a wealth of detector concepts being studied in the context of future [e+e-] colliders
use of **common software** tools for simulation is highly desirable:

- economise on person-power
- avoid reinventing the wheel
- more robust comparisons

different detector concepts are increasingly using common SW tools

→ more in Gerardo’s talk
Full Simulation

description of geometry, materials, sensitive volumes

interfaced to

simulation of particle transport & interactions
Geometry / material description

DD4hep is used in many studies

some use “standalone” G4 descriptions,
but trend is to migrate to DD4hep

central definition of geometry, materials, sensitive volumes, EM fields
→ referred to by simulation, reconstruction, analysis, visualisation
→ designed for use from experiment’s conception to its death
 (eg alignment, conditions, ...)
describe system in **Detector constructor** code (c++, .py)
many basic “idealised” examples exist
also several highly detailed examples
→ reuse existing code, or write your own if necessary

include subdetectors, set their parameters, materials, segmentation...
in a **compact description** (.xml , JSON)
highly detailed simulations

describe material due to support structures cooling, power, DAQ

scalable models

change detector size by changing just a few parameters in an .xml file

→ in principle enables “plug and play” of different subsystems, even from different concepts [if suitable]
different programs used to simulate processes in models

- ddsim (part of DD4hep)

- integrated into other framework e.g. k4SimGeant4 (Gaudi-based FCCSW)

work ongoing to integrate full functionality into all approaches
some examples:
DD4hep for test-beam prototypes

validation of simulation with test-beam

realistic detector simulation requires close contact with hardware groups
using the same simulation framework makes it much easier!

extension of test-beam model → full detector

realistic services, dead materials, cracks, ... in simulation model
“hybrid” calorimeter simulation [ILD]

simultaneously simulate two technologies:
- sensor thickness ~ readout layer → scintillator & RPC [HCAL]
- silicon & scintillator [ECAL]

→ save CPU
→ particle-by-particle comparisons

The IDEA DR calorimeter

Design of the fully projective fiber calorimeter

Barrel: Inner length: 5m
Outer diameter: 9 m @ 90°
2 m long copper based towers
36 rotation around z axis

About 130 x 10^6 fibers considered.

Each fiber is coupled to a dedicated SiPM, to achieve:
- Excellent spatial resolution
- Excellent angular resolution
- Excellent shower shape sensitivity for PID.

If not stated otherwise, all results in the following are obtained with the Geant4 toolkit.
New studies about the Cluster Counting

Goal: Investigation of the potential of the C.C. (for He based drift chamber) with parametrization of the generation of ionization clusters

Studies done with 2m long tracks through a 1cm3 box of gas (80% He and 10% iC$_4$H$_{10}$)

Garfield++:
- simulates the ionization process in a detailed way
- computes the gas properties (drift and diffusion coefficients as function of the fields value)
- solves the electrostatic planar configuration and simulates the free charges movements and collections on the electrodes.
- cannot simulate a full detector and collider events.

Geant4:
- simulates the particle interaction with material of a full detector.
- But... the fundamental properties and performance of the sensible elements (drift cells) are either parameterized or ad-hoc physics models have to be defined.

TPC dE/dx:
Geant4 prediction scaled to testbeam measurements
digitisation from Geant4 signal → recorded signal

often crucial for good description of reality
diffusion, amplification in TPC
photon production / transport in crystals, scintillators
SiPM response
avalanche in gas detectors
time structure
readout electronics

...
fast simulation tools
tracking detector layout

calculate track covariance matrices from
sensor positions, resolutions, materials

→ single particle performance

LiC Detector Toy PoS (Vertex 2011) 026

specific tool for studying tracking layout [MatLab]

tkLayout

widely used for
CMS tracker studies

The sensor spatial resolution in z
on measurement layer i is noted \(\sigma_i \).

Multiple scattering is treated as a measurement error \(M_{z1} \).
“full event”-level fast-sim tools
DELPHES

4-vector smearing with parameterised detector resolutions, efficiencies

charged particle momentum resolution and
single-particle calorimeter energy resolution typically tuned to full-sim, prototype performance, ...

b/c/tau-tagging:
averaged approach, based on efficiency & fake rates at one or more operating points

recently introduced lookup table of full track covariances [IDEA concept]
→ will allow much more correct vertexing & HF-tagging

several relevant DEPHES cards:
CircularEE IDEA generic ILC CLICdet ...

https://cp3.irmp.ucl.ac.be/projects/delphes
SGV Simulation a Grande Vitesse

fast simulation;
similar speed to eg DELPHES

Tracking:
detailed description of tracking and material layers
→ calculation of full track covariance matrix
→ meaningful b/c-tagging possible

Calorimeters:
smeering by single-particle resolution

Particle Flow reconstruction:
parameterise confusion effects between near-by particles,
tune by comparison with fullsim results (PandoraPFA)

e.g. study of how ILD performance scales with
detector radius, length, field, cost, ...
~300 models simulated
mixed simulation: as accurate as necessary where needed

- hybrid
 - full sim &
 - fast parameterised simulation e.g. GFlash
 selected by particle-type, subdetector

- semi-fast simulation,
 - especially of computing-hungry calorimeters
 → e.g. machine-learned detailed parameterisation
 description of shower shapes & correlations
 → potentially very significant reduction in computing resources

Fast and Accurate Electromagnetic and Hadronic Showers from Generative Models

Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Daniel Hundhausen, Gregor Kasiezka, William Korcari, Anatolii Korol, Katja Krüger, Peter McKeown, Lennart Rustige

sascha.daniel.diefenbacher@uni-hamburg.de

vCHEP 2021

Geant4

60°

GAN

60°
summary

detector simulations are essential to investigate
- physics capabilities
- detector optimisation
- technology development, prototypes
- technology comparisons

required simulation detail differs

tools are available for
detailed geometry description
full event simulation
fast parametrised simulation at different levels of sophistication
→ hybrid approaches

strong trend to use common tools to simulate
detectors at future Higgs Factories

thanks for their input to:
M. Aleksa, P. Azzi, F. Bedeschi, A. Ciarma, F. Gaede, M. Lucchini, A. Sailer, M. Selvaggi, D. Zerwas...
and to those from whose presentations I took material