
Minutes of the HTTP REST TAPE
API meeting (16th of April 2021)

Goals we wanted to achieve for this meeting
• Gather dCache, StoRM, EOSCTA use cases for the version 1 of this tape REST API
• Decide on a way to communicate among ourselves

Document we used to start our discussions

https://docs.google.com/document/d/1xioJmM1cr9iWaTd-
8cpM7f6h3wP4qNfvAGxcHWSvOQs/edit#heading=h.uo4rpbytmgqm

Minimum functionalities we would like to have in 
common

Here are the minimum functionalities we would like to have in common for this first version of 
the API:

• Submit bulk “stage” requests: give a list of files to the API to trigger their retrieval from 
tape

• Cancel “stage” requests: a user can cancel the each retrieve request in the bulk request
• Evict disk copy from the cache.
• Get informations about files known by the system (file archival use case)
• Delete bulk requests (cancel + clear)
• Define the lifetime of a bulk request
• Limit the number of bulk-requests submitted by users
• Limit the number of files contained in a bulk-request

REST API implementation to provide these 
functionalities

Submit bulk “stage” requests: give a list of files to the API to trigger 
their retrieval from tape

This will be done by issuing a STAGE activity on the resource api/v1/bulk-requests (POST).

The STAGE activity allows to stage all the files located in the bulk request.

This activity was “invented” during this meeting. Indeed, even if the PIN (lifetime=0) would 

1 



do the job, the main goal of the PIN activity is to be able to give the user the possibility to let a 
file on disk for a certain amount of time (retention policy).

To be decided in the next meeting: what are the messages (json) that will be exchanged between 
the client and the server ?

Cancel “stage” requests: a user can cancel the each retrieve request 
in the bulk request

This will be done by issueing an HTTP PATCH command on the resource api/v1/bulk-
requests/id.

To be decided in the next meeting: what are the messages (json) that will be exchanged between 
the client and the server ?

Evict disk copy from the cache

This will be done by issueing an UNPIN activity on the resource api/v1/bulk-requests 
(POST).

The UNPIN activity will allow to evict the disk copies of all files in the bulk request.

To be decided in the next meeting: what are the messages (json) that will be exchanged between 
the client and the server ?

• List of files from the client

Get informations about files known by the system

One use-case for this functionality is to allow to track the progress of files archival to tape.

This will be achieved by issueing a FILEINFO activity on the resource api/v1/bulk-requests 
(POST).

Here is the list of information we would like to have per file in the bulk request. The list will be 
extended during the next meeting:

• Disk residency
• Tape residency
• File existence in the namespace
• errors
• checksum

For simplicity reasons, we would like this FILEINFO activity to be asynchronous like the other 
ones. Also, on dCache, getting these file informations might take some time.

To be decided in the next meeting: what are the messages (json) that will be exchanged between 
the client and the server ?

2 



Delete a bulk request

This will be done by issuing an HTTP DELETE command on the resource api/v1/bulk-
requests/id. This will have the effect of CANCEL + CLEAR the bulk request.

To be decided in the next meeting: what are the messages (json) that will be exchanged between 
the client and the server ?

Define the lifetime of a bulk-request

To be decided in the next meeting: how do we define the lifetime of a bulk-request ?

Is it a constraint we want do expose ? If yes how do we show this information to the user ?

Limit the number of bulk-requests submitted by users

To be decided in the next meeting: how do we limit the number of bulk-requests submitted by 
the users ?

Is it a constraint we want do expose ? If yes how do we show this information to the user ?

Limit the number of files contained in a bulk-requests

To be decided in the next meeting: how do we limit the number of files a user can submit per-
bulk request.

Is it a constraint we want do expose ? If yes how do we show this information to the user ?

3 



Summary
Functionality Implementation

Submit bulk “stage” requests POST api/v1/bulk-requests. 
Activity=STAGE

Cancel “stage” requests PATCH api/v1/bulk-
requests/id

Evict disk copy from the cache POST api/v1/bulk-requests. 
Activity=UNPIN

Get informations about files known by the system (file 
archival tracking use case)

POST api/v1/bulk-requests. 
Activity=FILEINFO

Delete bulk requests (cancel + clear) DELETE api/v1/bulk-
requests/id

Define the lifetime of a bulk request To be decided

Limit the number of bulk-requests submitted by users To be decided

Limit the number of files contained in a bulk-request To be decided

What needs to be discussed in a future meeting
• Message exchanges between the client and the server for each functionality. Define the 

JSON structure of the request/response, ERROR codes when the operation is not 
supported, etc…

• What is going to be returned, per file, by the FILEINFO activity
• API Discovery mechanism
• Per-VO limitations ?
• Bulk-requests limitations
• Authentication users and server can interract with our API, how do we decide to 

authenticate ?
• Exposure of the API limitations/constraints to the user ?

Ways of communication
• Cedric will create an e-group where anyone who is interested can subscribe to. egroup 

name: wlcg-tape-rest-api-discussions
• We will report at each DOMA-TPC meeting our progress on this API.

We will organize a future meeting soon to continue the discussion.

4 



Food for thought for the version 2 of the API

We have discussed ideas for the version 2, I just list them so that we do not forget about them.

• Support for synchronous operations
• PAUSE, UNPAUSE bulk-requests

5 


	Goals we wanted to achieve for this meeting
	Document we used to start our discussions
	Minimum functionalities we would like to have in common
	REST API implementation to provide these functionalities
	Submit bulk “stage” requests: give a list of files to the API to trigger their retrieval from tape
	Cancel “stage” requests: a user can cancel the each retrieve request in the bulk request
	Evict disk copy from the cache
	Get informations about files known by the system
	Delete a bulk request
	Define the lifetime of a bulk-request
	Limit the number of bulk-requests submitted by users
	Limit the number of files contained in a bulk-requests

	Summary
	What needs to be discussed in a future meeting
	Ways of communication
	Food for thought for the version 2 of the API

