

			-		<i></i>
b ∫ a	type	a (in)	р (in)	t _{c10} (GHz)	frequency range (GHz)
	WR 2300	23.000	11.500	.256	.32–.49
	WR 2100	21.000	10.500	.281	.35 –.53
	WR 1800	18.000	9.000	.328	.41 –.62
	WR975	9.750	4.875	.605	.75 – 1.12
	WR770	7.700	3.850	.767	.96 – 1.45
	WR650	6.500	3.250	.908	1.12 – 1.70
	WR430	4.300	2.150	1.375	1.70 – 2.60
	WR284	2.84	1.34	2.08	2.60 – 3.95
	WR187	1.872	.872	3.16	3.95 – 5.85
	WR137	1.372	.622	4.29	5.85 - 8.20
	WR90	.900	.450	6.56	8.2 – 12.4
	WR62	.622	.311	9.49	12.4 - 18

Tensor of the Permeability (2) $\|\mu\| = \begin{pmatrix} \mu & i\kappa & 0 \\ -i\kappa & \mu & 0 \\ 0 & 0 & \mu_0 \end{pmatrix}$ Tensor of permeability for the case $\mathbf{B}_0 \| \mathbf{e}_z$ $\mu = 1 + \frac{\omega_0 \gamma \mu_0 M_s}{\omega_0^2 - \omega^2} \quad \text{and} \quad \kappa = \frac{\omega \gamma \mu_0 M_s}{\omega_0^2 - \omega^2} \text{ without loss}$ or $\mu = 1 + \frac{\omega_0 \omega_m (\omega_0^2 - \omega^2) + \omega_0 \omega_m \omega^2 \alpha^2}{(\omega_0^2 - \omega^2 (1 + \alpha^2))^2 + 4\omega_0^2 \omega^2 \alpha^2} - i \frac{\omega \omega_m \alpha (\omega_0^2 - \omega^2 (1 + \alpha^2))}{(\omega_0^2 - \omega^2 (1 + \alpha^2))^2 + 4\omega_0^2 \omega^2 \alpha^2} - i \frac{\omega^2 \omega_0 \omega_m \alpha}{(\omega_0^2 - \omega^2 (1 + \alpha^2))^2 + 4\omega_0^2 \omega^2 \alpha^2} - i \frac{2\omega^2 \omega_0 \omega_m \alpha}{(\omega_0^2 - \omega^2 (1 + \alpha^2))^2 + 4\omega_0^2 \omega^2 \alpha^2} \quad \text{with loss}$ $\omega_m = \gamma \mu_0 M_s \text{ and } \alpha \text{ damping constant for precession}$ $\gamma = \frac{e}{m_e} \text{ and } M_s \text{ saturation magnetization}$ RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain

Acknowledgement: I would like to thank two persons who supported me during preparation of this lecture. Valery Katalev provided simulation results and Ingo Sandvoss took photographs.

Thank you very much for your your attention

RF Transport, S. Choroba, DESY, CERN School on High Power Hadron Machines, 25 May - 02 June 2011, Bilbao, Spain

