Dynamics of Non-Linear Beams with Space-Charge

Chris Prior

STFC/RAL and Trinity College Oxford

Basic equations

$$
\begin{align*}
x^{\prime \prime}+k_{x}(s) x-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} E_{x}(x, y, z, s) & =0 \tag{1}\\
y^{\prime \prime}+k_{y}(s) y-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} E_{y}(x, y, z, s) & =0 \tag{2}\\
z^{\prime \prime}+k_{z}(s) z-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} E_{z}(x, y, z, s) & =0 \tag{3}
\end{align*}
$$

Particle coordinates (x, y, z) with respect to frame whose motion is given by s
Factor $1 / \gamma^{2}$ from electrostatic-magnetostatic effects
Other factor γ from relativistic mass $m=m_{0} \gamma$
Space-charge field \mathbf{E} from Maxwell's equation:

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{q}{\epsilon_{0}} n(x, y, z, s) \tag{4}
\end{equation*}
$$

where $n(x, y, z, s)$ is the number density of the beam distribution.
$n(x, y, z, s)$ given by the particle density $f\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, s\right)$ in six-dimensional phase space, which must satisfy the Vlasov equation

$$
\begin{equation*}
\frac{\partial f}{\partial s}+\left(\mathbf{x}^{\prime} \cdot \nabla\right) f-\left(\mathbf{k}-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} \mathbf{E}\right) \cdot \nabla_{\mathbf{x}^{\prime}} f=0 \tag{5}
\end{equation*}
$$

through

$$
\begin{equation*}
n=\iiint f\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, s\right) \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} z^{\prime} \tag{6}
\end{equation*}
$$

The total number of particles in the beam is

$$
\begin{equation*}
N=\iiint n(x, y, z, s) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \tag{7}
\end{equation*}
$$

This is a complete set of seven coupled equations in which the distribution determines the forces, which determine the motion, which determines the distribution, and so on.

How do we study a very non-linear beam?

RMS Properties of Beams

For non-linear beams, use the moments of the distribution and consider the behaviour of r.m.s quantities.
Define the average value of a quantity $g\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, s\right)$ by

$$
<g\rangle=\frac{1}{N} \int \ldots \int g f \mathrm{~d} x \ldots \mathrm{~d} z^{\prime}
$$

The r.m.s. envelope is

$$
\tilde{x}=\sqrt{\left\langle x^{2}\right\rangle}
$$

and the r.m.s. emittance is

$$
\tilde{\epsilon}_{x}=\left[\left\langle x^{2}><x^{\prime 2}>-<x x^{\prime}>^{2}\right]^{\frac{1}{2}}\right.
$$

Note: invariant under rotations of phase-space coordinates
If the beam projection in $x-x^{\prime}$ phase space is a uniform filling of the tilted ellipse
then

$$
\hat{\gamma}_{x} x^{2}+2 \hat{\alpha}_{x} x x^{\prime}+\hat{\beta}_{x} x^{\prime 2} \leqslant \epsilon \quad\left(\hat{\beta}_{x} \hat{\gamma}_{x}-\hat{\alpha}_{x}^{2}=1\right),
$$

$$
\tilde{x}=\frac{1}{2} \sqrt{\epsilon \hat{\beta}},
$$

and
$\tilde{\epsilon}=\frac{1}{4} \epsilon$
Science \& Technology Facilities Council

Beams are equivalent if they have the same first and second moments
Note: $\quad \tilde{\epsilon}^{2}=\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}=\left\langle x^{\prime 2}\right\rangle\left\{\left\langle x^{2}\right\rangle-\frac{\left\langle x x^{\prime}\right\rangle^{2}}{\left\langle x^{\prime 2}\right\rangle}\right\}$
$=\left\langle x^{\prime 2}\right\rangle\left\{\left\langle x^{2}\right\rangle-2 \frac{\left\langle x x^{\prime}\right\rangle^{2}}{\left\langle x^{\prime 2}\right\rangle}+\frac{\left\langle x x^{\prime}\right\rangle^{2}\left\langle x^{\prime 2}\right\rangle}{\left\langle x^{\prime 2}\right\rangle^{2}}\right\}$
$=\left\langle x^{\prime 2}\right\rangle\left\langle x^{2}-2 x x^{\prime} \frac{\left\langle x x^{\prime}\right\rangle}{\left\langle x^{\prime 2}\right\rangle}+x^{\prime 2}\left(\frac{\left\langle x x^{\prime}\right\rangle}{\left\langle x^{\prime 2}\right\rangle}\right)^{2}\right\rangle$
$=\left\langle x^{\prime 2}\right\rangle\left\langle\left(x-x^{\prime} \frac{\left\langle x x^{\prime}\right\rangle}{\left\langle x^{\prime 2}\right\rangle}\right)^{2}\right\rangle$ confirmed positive, valid definition

Define RMS Twiss parameters to identify the RMS emittance ellipse

$$
\begin{aligned}
a=\sqrt{\epsilon \beta} & \Longrightarrow \quad \beta_{r m s}=\frac{\tilde{x}^{2}}{\tilde{\epsilon}}=\frac{\left\langle x^{2}\right\rangle}{\tilde{\epsilon}} \\
a^{\prime}=-\hat{\alpha} \sqrt{\frac{\epsilon}{\hat{\beta}}} \Longrightarrow a a^{\prime}=-\hat{\alpha} \epsilon & \Longrightarrow \quad \alpha_{r m s}=-\frac{\left\langle x x^{\prime}\right\rangle}{\tilde{\epsilon}} \\
\hat{\gamma}=\frac{1+\hat{\alpha}^{2}}{\hat{\beta}} & \Longrightarrow \gamma_{r m s}=\frac{1+\alpha_{r m s}^{2}}{\beta_{r m s}}=\frac{\left\langle x^{\prime 2}\right\rangle}{\tilde{\epsilon}}
\end{aligned}
$$

$\alpha_{r m s}$ and $\beta_{r m s}$ give orientation and aspect ratio of an "emittance ellipse".
Single particle emittance: $\gamma_{r m s} x^{\prime 2}+2 \alpha_{r m s} x x^{\prime}+\beta_{r m s} x^{2}$
100% emittance is maximum for all particles
Statistics then used to find the more meaningful 90% emittance

How important is RMS emittance? How does it evolve? What causes it to change?

$$
x^{\prime \prime}=-k_{x}(s) x+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} E_{x}
$$

Calculations:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s}<x^{2}> & =2<x x^{\prime}> \\
\frac{\mathrm{d}}{\mathrm{~d} s}<x x^{\prime}> & =<{x^{\prime 2}>+<x x^{\prime \prime}>}=<{x^{\prime 2}>-k_{x}(s)<x^{2}>+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}<x E_{x}>}^{\frac{\mathrm{d}}{\mathrm{~d} s}<x^{\prime 2}>}=2<x^{\prime} x^{\prime \prime}> \\
& =-2 k_{x}(s)<x x^{\prime}>+\frac{2 q}{m_{0} \gamma^{3} \beta^{2} c^{2}}<x^{\prime} E_{x}>
\end{aligned}
$$

Evolution of RMS Emittance under Space-Charge

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{\epsilon}^{2} & =\frac{\mathrm{d}}{\mathrm{~d} s}\left[\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}\right] \\
= & 2\left\langle x x^{\prime}\right\rangle\left\langle x^{\prime 2}\right\rangle+2\left\langle x^{2}\right\rangle\left\{-k_{x}(s)\left\langle x x^{\prime}\right\rangle+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x^{\prime} E_{x}\right\rangle\right\} \\
& -2\left\langle x x^{\prime}\right\rangle\left\{\left\langle x^{\prime 2}\right\rangle-k_{x}(s)\left\langle x^{2}\right\rangle+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x E_{x}\right\rangle\right\} \\
= & \frac{2 q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left[\left\langle x^{2}\right\rangle\left\langle x^{\prime} E_{x}\right\rangle-\left\langle x x^{\prime}\right\rangle\left\langle x E_{x}\right\rangle\right]
\end{aligned}
$$

RMS emittance

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{\epsilon}^{2}=\frac{2 q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left[<x^{2}><x^{\prime} E_{x}\right\rangle-\left\langle x x^{\prime}\right\rangle\left\langle x E_{x}\right\rangle\right]
$$

RMS emittance will be constant under linear space-charge forces $E_{x} \propto x$.

Evolution of RMS Envelope under Space-Charge

$$
\begin{aligned}
2 \tilde{x} \frac{\mathrm{~d} \tilde{x}}{\mathrm{~d} s}=\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{x}^{2} & =2\left\langle x x^{\prime}\right\rangle \\
\Longrightarrow \quad \tilde{x} \frac{\mathrm{~d}^{2} \tilde{x}}{\mathrm{~d} s^{2}}+\left(\frac{\mathrm{d} \tilde{x}}{\mathrm{~d} s}\right)^{2} & =\left\langle x^{2}\right\rangle-k_{x}(s)\left\langle x^{2}\right\rangle+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x E_{x}\right\rangle \\
& =\left\langle x^{\prime 2}\right\rangle-k_{x}(s) \tilde{x}^{2}+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x E_{x}\right\rangle \\
\Longrightarrow \quad \tilde{x}\left(\frac{\mathrm{~d}^{2} \tilde{x}}{\mathrm{~d} s^{2}}+k_{x}(s) \tilde{x}\right) & =\left\langle x^{\prime 2}\right\rangle-\frac{\left\langle x x^{\prime}\right\rangle^{2}}{\tilde{x}^{2}}+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x E_{x}\right\rangle \\
& =\frac{\tilde{\epsilon}^{2}}{\tilde{x}^{2}}+\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}}\left\langle x E_{x}\right\rangle
\end{aligned}
$$

RMS envelope equation

$$
\frac{\mathrm{d}^{2} \tilde{x}}{\mathrm{~d} s^{2}}+k_{x}(s) \tilde{x}-\frac{\tilde{\epsilon}^{2}}{\tilde{x}^{3}}-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} \frac{\left\langle x E_{x}\right\rangle}{\tilde{x}}=0
$$

Special 2D Distributions

(a) Kapchinskij-Vladimirskij (KV) distribution
(b) Non-stationary Waterbag distribution
(c) Non-stationary Parabolic distribution
(d) Non-stationary Gaussian distribution

(a) KV Distribution

Particles uniformly populate the surface of a hyper-ellipsoid in 4D phase-space

$$
f\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{N}{\pi^{2} a b \epsilon_{x} \epsilon_{y}} \delta\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{a^{2} x^{\prime 2}}{\epsilon_{x}^{2}}+\frac{b^{2} y^{\prime 2}}{\epsilon_{y}^{2}}-1\right\}
$$

where δ is the Dirac delta-function.
Real-space number density is

$$
n(x, y)=\iint_{\text {all space }} f\left(x, y, x^{\prime}, y^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} y^{\prime}=\frac{N}{\pi a b}, \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leqslant 1 .
$$

$\Longrightarrow \quad$ a uniform elliptical beam.

$$
\begin{aligned}
\left\langle x^{2}\right\rangle=\frac{1}{4} a^{2}, \quad\left\langle x^{\prime 2}\right\rangle & =\frac{\epsilon_{x}^{2}}{4 a^{2}} \quad\left\langle x x^{\prime}\right\rangle=0, \\
& \Longrightarrow \quad \tilde{x}=\frac{1}{2} a, \quad \tilde{y}=\frac{1}{2} b, \quad \tilde{\epsilon_{x}}=\frac{1}{4} \epsilon_{x}, \quad \tilde{\epsilon_{y}}=\frac{1}{4} \epsilon_{y} .
\end{aligned}
$$

Space-charge forces linear \Longrightarrow RMS emittances, $\tilde{\epsilon}_{x}, \tilde{\epsilon}_{y}$ are constant.
Distribution of particles is preserved in a linear focusing system \rightarrow stationary

Bintamers 0 wa

VERTICAL PHASE-SPACE

$\mathrm{x}-\mathrm{Y}$ PHASE-SPACE PROSDCTION

mermanamaxima

-

(b) Waterbag Distribution

Particles uniformly fill the 4D hyper-ellispoid in phase-space:

$$
f\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{2 N}{\pi^{2} a^{4}}, \quad x^{2}+y^{2}+x^{\prime 2}+y^{\prime 2} \leqslant a^{2}
$$

if we assume a round beam with equal emittances and use normalised variables.
Real-space density is $\quad n(x, y)=\frac{2 N}{\pi a^{2}}\left(1-\frac{r^{2}}{a^{2}}\right), \quad r^{2}=x^{2}+y^{2} \leqslant a^{2}$
Space-charge fields are

$$
E_{r}=\frac{q}{2 \pi \epsilon_{0} r} \int_{0}^{r} n(r) 2 \pi r \mathrm{~d} r=\frac{N q}{2 \pi \epsilon_{0} r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{2}\right], \quad r \leqslant a
$$

Then

$$
\left\langle x^{2}\right\rangle=\frac{1}{6} a^{2}=\left\langle x^{\prime 2}\right\rangle, \quad\left\langle x x^{\prime}\right\rangle=0 \quad \Longrightarrow \quad \tilde{\epsilon}_{x}=\frac{1}{6} a^{2}=\frac{1}{6} \epsilon .
$$

Space-charge fields are non-linear, so RMS emittance is not constant and the initial distribution will change with time.
This 2D-waterbag distribution is not stationary.

VERTICAL PEASB-SPACE

HOREONIAL FEASE-SPACL

$\mathrm{X}-\mathrm{Y}$ PHASE-SPACT PROJKCIION

(c) Parabolic Distribution

Beam fills the 4D hyper-ellipsoid with a parabolic density:

$$
f\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{6 N}{\pi^{2} a^{4}}\left(1-\frac{\rho^{2}}{a^{2}}\right) \quad \rho^{2}=x^{2}+y^{2}+x^{\prime 2}+y^{\prime 2} \leqslant a^{2} .
$$

Real-space density is $\quad n(x, y)=\frac{3 N}{\pi a^{2}}\left(1-\frac{r^{2}}{a^{2}}\right)^{2}, \quad r^{2}=x^{2}+y^{2} \leqslant a^{2}$
Space-charge fields are

$$
E_{r}=\frac{q}{2 \pi \epsilon_{0} r} \int_{0}^{r} n(r) 2 \pi r \mathrm{~d} r=\frac{N q}{2 \pi \epsilon_{0} r}\left[1-\left(1-\frac{r^{2}}{a^{2}}\right)^{3}\right], \quad r \leqslant a
$$

Then $\quad\left\langle x^{2}\right\rangle=\frac{1}{8} a^{2}=\left\langle x^{\prime 2}\right\rangle, \quad\left\langle x x^{\prime}\right\rangle=0 \quad \Longrightarrow \quad \tilde{\epsilon}_{x}=\frac{1}{8} a^{2}=\frac{1}{6} \epsilon$.
Non-linear forces \Longrightarrow beam evolves, distribution changes with time, nonstationary.

> Note alternative form of distributions: $n(x, y)=\frac{m}{\pi a b}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{m-1}$
> $m=0$ is KV, $m=1$ is Waterbag, $m=2$ is parabolic, etc.

(d) Gaussian Distribution

Gaussian model distribution, cut off at n standard deviations $(3 \leq n \leq 10)$ to avoid unrealistic tails

$$
f\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{N}{4 \pi^{2} \sigma^{4}} \exp \left(-\frac{\rho^{2}}{2 \sigma^{2}}\right), \quad \rho \leqslant n \sigma
$$

Projection in real-space is also Gaussian:

$$
n(x, y)=\frac{N}{2 \pi \sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right), \quad r \leqslant n \sigma
$$

Space-charge fields given by

$$
E_{r}=\frac{N q}{2 \pi \epsilon_{0} r}\left[1-\exp \left(-\frac{r^{2}}{a^{2}}\right)\right], \quad r \leqslant n \sigma
$$

RMS quantities: $\quad\left\langle x^{2}\right\rangle=\sigma^{2}=\left\langle x^{\prime 2}\right\rangle, \quad\left\langle x x^{\prime}\right\rangle=0 \quad \Longrightarrow \tilde{\epsilon}=\frac{1}{n^{2}} \epsilon$
Space-charge fields are non-linear, so distribution is not stationary.

VERTICAL PHASR-SPACGB

matange: $\mathbf{0} \mathbf{~ m}$

 =-

Recall: For a 2D uniform beam with elliptical cross section $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leqslant 1$, space-charge forces are linear and given by

$$
\mathbf{E}=\frac{N q}{\pi \epsilon_{0}(a+b)}\left(\frac{x}{a}, \frac{y}{b}\right),
$$

where N is the number of particles per unit length.
Equations of particle motion and envelope equations are then:

$$
\begin{aligned}
& {\left[\begin{array}{r}
x^{\prime \prime}+k_{x}(s) x-\frac{2 K}{a+b} \frac{x}{a}=0 \\
y^{\prime \prime}+k_{y}(s) y-\frac{2 K}{a+b} \frac{y}{b}=0 \\
a^{\prime \prime}+k_{x}(s) a-\frac{\epsilon_{x}^{2}}{a^{3}}-\frac{2 K}{a+b}=0 \\
b^{\prime \prime}+k_{b}(s) b-\frac{\epsilon_{y}^{2}}{b^{3}}-\frac{2 K}{a+b}=0
\end{array}\right.} \\
& K=\frac{I}{I_{0}} \frac{2}{(\beta \gamma)^{3}} \text { is the Perveance and } I_{0}=\frac{4 \pi \epsilon_{0} m_{0} c^{3}}{q}
\end{aligned}
$$

Use of RMS Envelope Equations

Compare

$$
\begin{array}{cl}
\text { KV } & a^{\prime \prime}+k a-\frac{\epsilon^{2}}{a^{3}}-\frac{K}{a}=0 \\
\text { RMS } & \tilde{x}^{\prime \prime}+k \tilde{x}-\frac{\tilde{\epsilon}^{2}}{\tilde{x}^{3}}-\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} \frac{\left\langle x E_{x}\right\rangle}{\tilde{x}}=0
\end{array}
$$

Sacherer showed that for ellipsoidal particle densities of the form

$$
n(x, y, z, s)=n\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}, s\right)
$$

the averages $\left\langle x E_{x}\right\rangle,\left\langle y E_{y}\right\rangle$ etc depend only very weakly on the exact charge distribution.

For 2D axisymmetric beam, radius R and uniform density n,

$$
E_{r}=\frac{n q r}{2 \epsilon_{0}} \Longrightarrow E_{x}=\frac{n q x}{2 \epsilon_{0}}
$$

Then $\left\langle x E_{x}\right\rangle=\left\langle y E_{y}\right\rangle=\frac{1}{2}\left(\left\langle x E_{x}\right\rangle+\left\langle y E_{y}\right\rangle\right)=\frac{n q}{4 \epsilon_{0}}\left\langle r^{2}\right\rangle$

$$
=\frac{n q}{4 \epsilon_{0}} \times \frac{1}{2} R^{2}=\frac{N q}{8 \pi \epsilon_{0}}
$$

Therefore RMS space-charge term is

$$
\frac{q}{m_{0} \gamma^{3} \beta^{2} c^{2}} \frac{\left\langle x E_{x}\right\rangle}{\tilde{x}}=\frac{N q^{2}}{8 \pi \epsilon_{0} m_{0} \gamma^{3} \beta^{2} c^{2}} \frac{1}{\tilde{x}}=\frac{\frac{1}{4} K}{\tilde{x}}
$$

and general RMS envelope equation is

$$
\tilde{x}^{\prime \prime}+k \tilde{x}-\frac{\epsilon^{2}}{\tilde{x}^{3}}-\frac{\frac{1}{4} K}{\tilde{x}}=0
$$

Now, for KV, $\quad \tilde{x}=\frac{1}{2} a, \tilde{\epsilon}=\frac{1}{4} \epsilon$
so KV envelope equation is, $\quad a^{\prime \prime}+k a-\frac{\epsilon^{2}}{a^{3}}-\frac{K}{a}=0$
$\Longrightarrow \quad 2 \tilde{x}^{\prime \prime}+2 k \tilde{x}-\frac{16 \tilde{\epsilon}^{2}}{8 \tilde{x}^{3}}-\frac{K}{2 \tilde{x}}=0$
This is the same as the general RMS envelope equation.
So, if we have a channel designed for a KV beam, it will also serve for a non-linear beam with the same RMS beam size.

Emittance Growth

What causes RMS emittance to evolve?

$$
\tilde{\epsilon}^{2}=\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}
$$

$\left\langle x^{2}\right\rangle \sim$ Kinetic Energy $\quad\left\langle x^{2}\right\rangle \sim$ Potential Energy

What else is present?

Field Energy of a Beam

Self-field energy is

$$
U=\frac{1}{2} \int \rho \phi \mathrm{~d} V=\frac{1}{2} \int q \phi n \mathrm{~d} V=\frac{1}{2} N q\langle\phi\rangle
$$

where $\rho=q n$ is the charge density and ϕ is the electrostatic potential, $\mathbf{E}=-\nabla \phi$

For the four special distributions, take a circular boundary of radius R where $\phi=0$.

$$
\begin{aligned}
& \text { e.g. for a KV beam, } E_{r<a}=\frac{N q}{2 \pi \epsilon_{0} a^{2}} r, \quad E_{r>a}=\frac{N q}{2 \pi \epsilon_{0} r} \\
& \Longrightarrow \quad \phi_{r<a}=\frac{N q}{4 \pi \epsilon_{0}}\left\{1+2 \ln \frac{R}{a}-\frac{r^{2}}{a^{2}}\right\} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
U_{K V} & =\frac{1}{2} N q \int_{0}^{a} \phi_{r<a}(r) 2 \pi r \mathrm{~d} r \\
& =\frac{N^{2} q^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{4}+\ln \frac{R}{a}\right) \quad\left(\text { and } a=2 \tilde{x}=2 \sqrt{\left\langle x^{2}\right\rangle}\right)
\end{aligned}
$$

$$
\begin{aligned}
& U_{K V}=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}+\frac{1}{4}-\ln 2\right\} \quad=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}-0.4431\right\} \\
& U_{W B}=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}+\frac{11}{24}-\frac{1}{2} \ln 6\right\} \quad=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}-0.4375\right\} \quad \Delta U_{W B}=0.0056 u_{0} \\
& U_{P A}=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}+\frac{73}{120}-\frac{1}{2} \ln 8\right\} \quad=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}-0.4314\right\} \quad \Delta U_{P A}=0.0118 u_{0} \\
& U_{G A}=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}+\frac{C}{2}-\ln 2\right\} \quad=u_{0}\left\{\ln \frac{R}{\left\langle x^{2}\right\rangle}-0.4046\right\} \quad \Delta U_{G A}=0.0386 u_{0}
\end{aligned}
$$

Here C is Euler's constant (0.577215665), $u_{0}=\frac{N^{2} q^{2}}{4 \pi \epsilon_{0}}=\frac{I^{2}}{4 \pi \epsilon_{0} \beta^{2} c^{2}}$ and Δ is the difference from the uniform KV model for equivalent beams (same $\left\langle x^{2}\right\rangle$).

Deduce that, for equivalent beams, the uniform KV distribution has the smallest field energy.

Energy Conservation

Kinetic energy of a single particle in the beam frame is $\frac{1}{2} m_{0} \gamma \beta^{2} c^{2} x^{\prime 2}$
Potential energy from external forces is $\frac{1}{2} m_{0} \gamma \beta^{2} c^{2} k_{x} x^{2}$

$$
\begin{aligned}
T & =\frac{1}{2} \int n m_{0} \gamma \beta^{2} c^{2} \sum x^{\prime 2} \mathrm{~d} V=\frac{1}{2} N m_{0} \gamma \beta^{2} c^{2} \sum\left\langle x^{\prime 2}\right\rangle \\
V & =\frac{1}{2} \int n m_{0} \gamma \beta^{2} c^{2} \sum k_{x} x^{2} \mathrm{~d} V=\frac{1}{2} N m_{0} \gamma \beta^{2} c^{2} \sum k_{x}(s)\left\langle x^{2}\right\rangle
\end{aligned}
$$

Calculations give Energy conservation law:

$$
T+V+\frac{1}{\gamma^{2}} U=\text { constant }
$$

For a continuous distribution with axisymmetry,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{\epsilon}_{x}^{2}=-\frac{1}{2} K \tilde{x}^{2} \frac{\mathrm{~d}}{\mathrm{~d} s} \frac{\Delta U}{u_{0}}
$$

where ΔU is the non-linear field energy and K is the perveance

$$
K=\frac{I}{I_{0}} \frac{2}{(\beta \gamma)^{3}}=\frac{N q^{2}}{2 \pi \epsilon_{0} m_{0} \gamma^{3} \beta^{2} c^{2}}
$$

Solve in conjunction with RMS envelope equation

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \tilde{x}+k_{x}(s) \tilde{x}-\frac{\tilde{\epsilon}_{x}^{2}}{\tilde{x}^{3}}-\frac{K}{4 \tilde{x}}=0
$$

An initially non-uniform beam in a focusing channel will release some or all of its non-linear field energy, which will be converted via kinetic and potential energies into RMS emittance as the beam evolves towards a stationary distribution.

Emittance Growth

Example

- Focusing channel with $\sigma_{0}=60^{\circ}$ and $\sigma=15^{\circ}$
- High levels of space charge, so the RMS beam size is approximately constant
- Assuming beam evolves to a minimum field energy state $\Delta U_{\text {final }}=0$ then theory predicts emittance growth of:

Distribution	$\Delta U / u_{0}$	Emittance Increase
Waterbag	0.0056	8%
Parabolic	0.0118	16%
Gaussian	0.0386	47%

PA

GA

Causes of Emittance Growth

- Non-linear self-forces arising from non-stationary beam profiles
- Non-linear applied forces
- Chromatic aberrations
- Beam mis-match causing oscillation of RMS radius
- Beam off-centering causing coherent oscillations about the central orbit
- Misalignment of magnets
- Coulomb scattering between particles
- Instabilities
- Non-linear coupling between transverse and longitudinal motion
- External statistical fluctuations (e.g. rf noise)

Quantifying Beam Halo

Kurtosis - an idea from statistics to measure tails of distributions, adapted for beams in accelerators. T. Wangler (LANL)

$$
\begin{aligned}
I_{2} & =\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2} \\
I_{4} & =\left\langle x^{4}\right\rangle\left\langle x^{\prime 4}\right\rangle+3\left\langle x^{2} x^{\prime 2}\right\rangle^{2}-4\left\langle x x^{\prime 3}\right\rangle\left\langle x^{3} x^{\prime}\right\rangle \\
H & =\frac{1}{2 I_{2}} \sqrt{3 I_{4}}-2 \\
& =\frac{\sqrt{3\left\langle x^{4}\right\rangle\left\langle x^{\prime 4}\right\rangle+9\left\langle x^{2} x^{\prime 2}\right\rangle^{2}-12\left\langle x x^{\prime 3}\right\rangle\left\langle x^{3} x^{\prime}\right\rangle}}{2\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-2\left\langle x x^{\prime}\right\rangle^{2}}-2 .
\end{aligned}
$$

Elliptical symmetry in phase space
$\Longrightarrow \quad H= \begin{cases}0 & \text { for the KV distribution } \\ 1 & \text { for the Gaussian distribution. }\end{cases}$
H is called the halo parameter
Multi-particle simulations show that significant halo in the 2D phasespace projection corresponds to $H>1$.

An alternative approach is to use the spatial profile parameter:

$$
h=\frac{\left\langle x^{4}\right\rangle}{\left\langle x^{2}\right\rangle^{2}}-2
$$

For beams with elliptical symmetry and densities

$$
\rho\left(x, x^{\prime}\right)=f\left(\beta x^{\prime 2}+2 \alpha x x^{\prime}+\gamma x^{2}\right),
$$

direct calculation shows $H=h$.
But not true for more general distributions
Simulations show that halo can "hide" in phase space and is not observed in some spatial projections.

Results from a beam halo experiment at LANL Beamprofile parameter from computer simulation at driftspace locations along the beamline for the matched and mismatched beams. Values for uniform (KV), Waterbag and Gaussian beams are shown. The excursions above the Gaussian level indicate a large halo

Science \& Technology Facilities Council

