
RNTuple on DAOS

EP R&D Software, 7.4—Efficient Analysis

Javier López-Gómez – CERN
<javier.lopez.gomez@cern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

http://root.cern/


ContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContentsContents

1 RNTuple Goals

2 Introduction

3 RNTuple Overview

4 RNTuple on DAOS

5 Evaluation

6 Conclusion

7 RNTuple Checkpoint

1/20



RNTuple Goals



Reminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/OReminder: HENP Event Data I/O

Why invest in tailor-made I/O sub system (TTree / RNTuple)

Capable of storing the HENP event data model: nested, inter-dependent
collections of data points

Performance-tuned for HENP analysis workflow (columnar binary layout,
custom compression etc.)

Automatic schema generation and evolution for C++ (via cling) and
Python (via cling + PyROOT)

Integration with federated data management tools (XRootD etc.)

Long-term maintenance and support

2/20



RNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple GoalsRNTuple Goals

Less disk and CPU usage for same data content
25% smaller files, ×2-5 better single-core performance
10GB/s per box and 1GB/s per core sustained end-to-end throughput
(compressed data to histograms)

Native support for object stores (targeting HPC)

Lossy compression

Systematic use of exceptions to prevent silent I/O errors

Getting ready for a new hardware landscape: architectural
heterogeneity, parallelism on all levels, blurring between device classes
(e.g. active storage, NV-DIMMs)

3/20



Introduction



ROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTupleROOT TTree and RNTuple

HEP analyses typically require access to many
events, but only a subset of their properties.

TTree has been in use for 25 years (1+ EB
stored in ROOT files!).

However, not designed to fully exploit modern
hardware.

RNTuple is the R&D project to evolve the
TTree I/O.

Object stores are first-class citizens.

x y z mass

...
...

...
...

0.423 1.123 3.744 23.1413

...
...

...
...

...
...

...
...

4/20



Object Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: MotivationObject Stores: Motivation

Issues with traditional storage stack

Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc.,
became less relevant for modern devices.

POSIX I/O (strong consistency), has been acknowledged as a major
problem for parallel filesystem scalability.

Modern object stores overcome these limitations.

GET and PUT primitives; objects accessed via a unique object identifier
(OID).

Object stores may have an important role in next-generation data
centers.

5/20



Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?Why Intel DAOS?

Modern fault-tolerant object store optimized for high bandwidth, low
latency, and high IOPS. Foundation of the Intel exascale storage stack.

Optimal use of Intel Optane DC persistent memory and NVMe SSDs
(access time in the order of µs).

Argonne’s Aurora1 I/O system will be based on DAOS.

Experience acquired supporting this in RNTuple can be reused for other
object stores.

1https://alcf.anl.gov/aurora
6/20



RNTuple Overview



RNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture OverviewRNTuple: Architecture Overview

Storage layer / byte ranges
(RPageSourceXxx, RPageSinkXxx)

POSIX files, object stores, …

Primitives layer / simple types
“Columns” containing elements of fundamental types (float,

int, …) grouped into (compressed) pages and clusters

Logical layer / C++ objects
Mapping of C++ types onto columns, e.g.

std::vector<float> 7→ index column and a value column

Event iteration
Looping over events for reading/writing

Approximate equivalent of TTree and RNTuple classes:

TTree ≈ RNTupleReader
RNTupleWriter

TTreeReader ≈ RNTupleView
TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool

7/20



RNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File FormatRNTuple: On-disk File Format

… …

Anchor Header Page
Cluster

Footer

fId

fE

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Pages: Array of fundamental types (maybe compressed); order of
∼ tens of KiB, but tunable at write time.
Cluster: Collection of pages for a certain range of events, e.g. 1–1000.
Page group: pages on a given cluster that contain instances of the same
data member.

Anchor/Header/Footer: Schema information + location of pages/clusters.

8/20



RNTuple on DAOS



DAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: ArchitectureDAOS Overview: Architecture

Server 1 Server 2 Server 3

Pool 1

Pool 2 Pool 3

Ta
rg
et
1

Ta
rg
et
2

Ta
rg
et
3

Ta
rg
et
4

Ta
rg
et
1

Ta
rg
et
2

Ta
rg
et
3

Ta
rg
et
4

Ta
rg
et
1

Ta
rg
et
2

Ta
rg
et
3

Ta
rg
et
4

System: a set of DAOS servers connected to the same fabric.

Server: Linux daemon that exports locally-attached NVM storage. Listens on
a management interface and 1+ fabric endpoints.

Target: static partition of storage resources (host controller, etc.). Avoids
contention, as each target has its private storage that can be directly
addressed over the fabric.

9/20



DAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and ObjectsDAOS Overview: Pools, Containers and Objects

DAOS pool DAOS container
key value
… …

key value
… …

DAOS object

Object: a Key–Value store with locality.

- The key is split into dkey (distribution key) and akey (attribute key).
- dkey affects data locality: DAOS guarantees that same dkey maps to same
target.

Object class: determines redundancy (replication/erasure code).

10/20



DAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility LayerDAOS Overview: Compatibility Layer

Legacy software can still use DAOS through its compatibility layer, i.e.

POSIX filesystem (libdfs). Can be used either through libioil (I/O call
iterception) or dfuse (FUSE filesystem).

MPI–IO. Provides DAOS support through a ROMIO driver (MPICH and
Intel MPI).

HDF5, Apache Spark, …

…although throughput may not be on par to direct use of libdaos.

11/20



Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…Back to RNTuple…

… …

Anchor Header Page
Cluster

Footer

fId

fE

Alternatives for mapping Clusters/Pages to Objects2

OID-per-page. A sequential OID is assigned for each committed page;
constant dkey and akey.

OID-per-cluster. clusterindex 7→ OID, dkey addresses individual pages in the
cluster; constant akey.

Improved OID-per-cluster. clusterindex 7→ OID, column 7→ dkey, akey
addresses individual pages.

2For the implementation, see: RDaos.cxx, RDaos.hxx, RPageStorageDaos.cxx, and
RPageStorageDaos.hxx.

12/20

https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RDaos.cxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/inc/ROOT/RDaos.hxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RPageStorageDaos.cxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/inc/ROOT/RPageStorageDaos.hxx


User (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOS

auto ntuple = RNTupleReader::Open("DecayTree",
"./B2HHH~zstd.ntuple");

auto x = ntuple->GetView<double>("x");
auto y = ntuple->GetView<double>("y");
auto z = ntuple->GetView<double>("z");
auto mass = ntuple->GetView<double>("mass");

for (auto i : ntuple->GetEntryRange()) {
//...

}

3UUIDs are not meaningful to users (common problem in object stores).

13/20



User (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOSUser (rather: file catalog) Interface: file vs. DAOS

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://e6f8e503-e409-4b08-8eeb-7e4d77cce6bb:1/b4f6d9fc-e081-

41d4-91ae-41adf800b537");3

auto x = ntuple->GetView<double>("x");
auto y = ntuple->GetView<double>("y");
auto z = ntuple->GetView<double>("z");
auto mass = ntuple->GetView<double>("mass");

for (auto i : ntuple->GetEntryRange()) {
//...

}

3UUIDs are not meaningful to users (common problem in object stores).

13/20



Evaluation



EvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluationEvaluation

Environment
Experiments ran on the CERN Openlab DAOS testbed:

3 DAOS servers, 1 client node

HFI: Omni-Path Silicon 100 + Omni-Path Edge 100 24-port switch

Test cases
Store/retrieve a 1.5 GB LHCb dataset into RNTuple, in a variety of
conditions:

1. Constant page size (10 000), increasing cluster size. Observe the effect
of queuing many small read operations.

2. Increasing page size, constant cluster size (320 000). Impact of the I/O
request size on the throughput.

14/20



OID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster sizeOID-per-page, constant page size, increasing cluster size

20,000
40,000

80,000
160,000

320,000
0

1

2

Number of elements per cluster

Th
ro
ug
hp
ut
(G
B/
s)

(a) gen_lhcb, no compression.

20,000
40,000

80,000
160,000

320,000
0

1

2

3

Number of elements per cluster
Th
ro
ug
hp
ut
(G
B/
s)

(b) lhcb, no compression.

Local dfuse (SX) dfuse (RP_XSF) libdaos (SX) libdaos (RP_XSF)

15/20



OID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster sizeOID-per-page, increasing page size, constant cluster size

20,000
40,000

80,000
160,000

320,000
0

1

2

Number of elements per page

Th
ro
ug
hp
ut
(G
B/
s)

(a) gen_lhcb, no compression.

20,000
40,000

80,000
160,000

320,000

1

2

Number of elements per page
Th
ro
ug
hp
ut
(G
B/
s)

(b) lhcb, no compression.

Local dfuse (SX) dfuse (RP_XSF) libdaos (SX) libdaos (RP_XSF)

16/20



OID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-clusterOID-per-page vs. OID-per-cluster

20,000
40,000

80,000
160,000

320,000

0.5

1

1.5

2

Number of elements per page

Th
ro
ug
hp
ut
(G
B/
s)

(a) gen_lhcb, no compression.

20,000
40,000

80,000
160,000

320,000

1

1.5

2

2.5

Number of elements per page
Th
ro
ug
hp
ut
(G
B/
s)

(b) lhcb, no compression.

OID/page (SX) OID/page (RP_XSF) OID/cluster (SX)

17/20



SummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummarySummary

Issuing many small I/O requests has a negative impact on the read
throughput.

DAOS performs better with large page sizes, where it outperforms local
SSDs.

RNTuple native DAOS backend outperforms dfuse in all cases.

IOR measured 12.3 GB/s: number of processes/threads seems to be a
limiting factor.

RNTuple-to-DAOS mapping seems to have a performance impact.

18/20



Conclusion



ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion

We expect object stores to have an important role in next-generation
data centers.

RNTuple architecture decouples storage from
serialization/representation. Object stores are first-class.

First prototype implementation of an Intel DAOS backend merged into
ROOT’s ‘master‘ branch.

Regular contact with DAOS development team; ongoing efforts to test
the backend in other cluster platforms, e.g. HPE DAOS testbed.

Next Questions

1. Further investigate reads not saturating the data link.

2. WIP: Optimize moving large amounts of existing HEP data to a
DAOS-based data center.

3. Implement and test Improved OID-per-cluster mapping.

19/20



RNTuple Checkpoint



RNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and PlansRNTuple Status and Plans

In the last 6 months

Merged DAOS backend

Experimental support for S3

CMSSW nanoAOD output module
(Max’ IRIS-HEP project)

Support for (aligned) friends

RBrowser support

Type casting (e.g. read float in
double)

Parallel page compression during
writing

LHCC review input

Upcoming steps

Merge version 1 binary format

Schema evolution
proof-of-concept

Finish up chains and merging

RVec support (important for RDF)

Double32 support

New HDF5 comparison
benchmarks

20/20



RNTuple on DAOS

EP R&D Software, 7.4—Efficient Analysis

Javier López-Gómez – CERN
<javier.lopez.gomez@cern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

http://root.cern/


Evaluation – Hardware and Software Environment

Figure 1: Server nodes Figure 2: Client node

DAOS 0.9.4, libfabric 1.7.2, libpsm2 11.2.78, and ROOT 1f1e9b8.

PSM2 transport (ofi+psm2); flow control disabled.


	RNTuple Goals
	Introduction
	RNTuple Overview
	RNTuple on DAOS
	Evaluation
	Conclusion
	RNTuple Checkpoint
	Appendix

