RNTuple on DAOS

EP R&D Software, 7.4—Efficient Analysis

Javier López-Gómez - CERN
<javier.lopez.gomez@cern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

1 RNTuple Goals

- 2 Introduction
- 3 RNTuple Overview
- 4 RNTuple on DAOS
- 5 Evaluation

6 Conclusion

7 RNTuple Checkpoint

RNTuple Goals

Why invest in tailor-made I/O sub system (TTree / RNTuple)

- Capable of storing the HENP event data model: nested, inter-dependent collections of data points
- Performance-tuned for HENP analysis workflow (columnar binary layout, custom compression etc.)
- Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROOT)
- Integration with federated data management tools (XRootD etc.)
- Long-term maintenance and support

- Less disk and CPU usage for same data content
 - 25% smaller files, ×2-5 better single-core performance
 - 10GB/s per box and 1GB/s per core sustained end-to-end throughput (compressed data to histograms)
- Native support for object stores (targeting HPC)
- Lossy compression
- Systematic use of exceptions to prevent silent I/O errors
- Getting ready for a new hardware landscape: architectural heterogeneity, parallelism on all levels, blurring between device classes (e.g. active storage, NV-DIMMs)

Introduction

- HEP analyses typically require access to many events, but only a subset of their properties.
- TTree has been in use for 25 years (1+ EB stored in ROOT files!).
- However, not designed to fully exploit modern hardware.
- **RNTuple** is the R&D project to evolve the TTree I/O.
- Object stores are first-class citizens.

х	у	z	mass
÷	÷	÷	÷
0.423	1.123	3.744	23.1413
÷	÷	÷	÷
÷	÷	÷	÷

Object Stores: Motivation

Issues with traditional storage stack

- Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc., became less relevant for modern devices.
- POSIX I/O (strong consistency), has been acknowledged as a major problem for parallel filesystem scalability.

Modern object stores overcome these limitations.

- GET and PUT primitives; objects accessed via a unique object identifier (OID).
- Object stores may have an important role in next-generation data centers.

- Modern fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS. Foundation of the Intel exascale storage stack.
- Optimal use of Intel Optane DC persistent memory and NVMe SSDs (access time in the order of μs).
- Argonne's Aurora¹ I/O system will be based on DAOS.
- Experience acquired supporting this in RNTuple can be reused for other object stores.

RNTuple Overview

RNTuple: Architecture Overview

Event iteration

Looping over events for reading/writing

Logical layer / C++ objects Mapping of C++ types onto columns, e.g. std::vector<float> → index column and a value column

Primitives layer / simple types "Columns" containing elements of fundamental types (float, int, ...) grouped into (compressed) pages and clusters

Storage layer / byte ranges

(RPageSourceXxx, RPageSinkXxx)

POSIX files, object stores, ...

Approximate equivalent of TTree and RNTuple classes: RNTupleReader TTree \approx RNTupleWriter TTreeReader **RNTupleView** \approx TBranch RField \approx TBasket \approx RPage TTreeCache \approx RClusterPool

RNTuple: On-disk File Format

Pages: Array of fundamental types (maybe compressed); order of ~ tens of KiB, but tunable at write time.
Cluster: Collection of pages for a certain range of events, e.g. 1–1000.
Page group: pages on a given cluster that contain instances of the same data member

Anchor/Header/Footer: Schema information + location of pages/clusters.

RNTuple on DAOS

DAOS Overview: Architecture

System: a set of DAOS servers connected to the same fabric.

Server: Linux daemon that exports locally-attached NVM storage. Listens on a management interface and 1+ fabric endpoints.

Target: static partition of storage resources (host controller, etc.). Avoids contention, as each target has its private storage that can be directly addressed over the fabric.

DAOS Overview: Pools, Containers and Objects

- Object: a Key–Value store with locality.
 - The key is split into dkey (distribution key) and akey (attribute key).
 - dkey affects data locality: DAOS guarantees that same dkey maps to same target.
- Object class: determines redundancy (replication/erasure code).

Legacy software can still use DAOS through its compatibility layer, i.e.

- POSIX filesystem (libdfs). Can be used either through libioil (I/O call iterception) or dfuse (FUSE filesystem).
- MPI-IO. Provides DAOS support through a ROMIO driver (MPICH and Intel MPI).
- HDF5, Apache Spark, ...

...although throughput may not be on par to direct use of libdaos.

Alternatives for mapping Clusters/Pages to Objects²

OID-per-page. A sequential OID is assigned for each committed page; constant *dkey* and *akey*.

OID-per-cluster. clusterindex \mapsto OID, dkey addresses individual pages in the cluster; constant akey.

Improved OID-per-cluster. clusterindex \mapsto OID, column \mapsto dkey, akey addresses individual pages.

²For the implementation, see: RDaos.cxx, RDaos.hxx, RPageStorageDaos.cxx, and RPageStorageDaos.hxx.

³UUIDs are not meaningful to users (common problem in object stores).

³UUIDs are not meaningful to users (common problem in object stores).

Evaluation

Evaluation

Environment

Experiments ran on the CERN Openlab DAOS testbed:

- 3 DAOS servers, 1 client node
- HFI: Omni-Path Silicon 100 + Omni-Path Edge 100 24-port switch

Test cases

Store/retrieve a 1.5 GB LHCb dataset into RNTuple, in a variety of conditions:

- 1. **Constant page size (10 000), increasing cluster size.** Observe the effect of queuing many small read operations.
- 2. Increasing page size, constant cluster size (320 000). Impact of the I/O request size on the throughput.

OID-per-page, constant page size, increasing cluster size

OID-per-page, increasing page size, constant cluster size

OID-per-page vs. OID-per-cluster

- Issuing many small I/O requests has a negative impact on the read throughput.
- DAOS performs better with large page sizes, where it outperforms local SSDs.
- RNTuple native DAOS backend outperforms **dfuse** in all cases.
- IOR measured 12.3 GB/s: number of processes/threads seems to be a limiting factor.
- RNTuple-to-DAOS mapping seems to have a performance impact.

Conclusion

Conclusion

- We expect object stores to have an important role in next-generation data centers.
- RNTuple architecture decouples storage from serialization/representation. Object stores are first-class.
- First prototype implementation of an Intel DAOS backend merged into ROOT's 'master' branch.
- Regular contact with DAOS development team; ongoing efforts to test the backend in other cluster platforms, e.g. HPE DAOS testbed.

Next Questions

- 1. Further investigate reads not saturating the data link.
- 2. WIP: Optimize moving large amounts of existing HEP data to a DAOS-based data center.
- 3. Implement and test Improved OID-per-cluster mapping.

RNTuple Checkpoint

In the last 6 months

- Merged DAOS backend
- Experimental support for S3
- CMSSW nanoAOD output module (Max' IRIS-HEP project)
- Support for (aligned) friends
- RBrowser support
- Type casting (e.g. read float in double)
- Parallel page compression during writing
- LHCC review input

Upcoming steps

- Merge version 1 binary format
- Schema evolution proof-of-concept
- Finish up chains and merging
- RVec support (important for RDF)
- Double32 support
- New HDF5 comparison benchmarks

RNTuple on DAOS

EP R&D Software, 7.4—Efficient Analysis

Javier López-Gómez - CERN
<javier.lopez.gomez@cern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

Evaluation - Hardware and Software Environment

System specification:

CPU	Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz
CPU per node	24 cores/socket, 2 sockets, 2 threads/core (HT enabled)
Core frequency	Base: 1.0 GHz Range: 1.0GHz - 3.9GHz
Numa nodes	node0: 0-23,48-71 node1: 24-47,72-95
System Memory	12x 32GB DDR4 rank DIMMs
Optane DCPMM	12x 128GB DDR4 rank DIMMs
Optane FW version	01.02.00.5395
BIOS	version: SE5C620.86B.02.01.0011.032620200659 date: 03/26/2020
Storage	4x 1 TB NVMe INTEL SSDPE2KX010T8
HFI	1x Intel Corporation Omni-Path HFI Silicon 100 Series.
HFI Firmware	Termal Management Module: 10.9.0.0.208; Driver: 1.9.2.0.0

CPU	Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz				
CPU per node	24 cores/socket, 2 sockets, 2 threads/core (HT enabled)				
Core frequency	Base: 1.0 GHz Range: 1.0GHz - 3.9GHz				
Numa nodes	node0: 0-23,48-71 node1: 24-47,72-95				
System Memory	12x 16GB DDR4 rank DIMMs				
BIOS	version: SE5C620.868.02.01.0011.032620200659 date: 03/26/2020				
HFI	1x Intel Corporation Omni-Path HFI Silicon 100 Series.				
HFI Firmware	Termal Management Module: 10.9.0.0.208; Driver: 1.9.2.0.0				

Figure 1: Server nodes

Figure 2: Client node

- DAOS 0.9.4, libfabric 1.7.2, libpsm2 11.2.78, and ROOT 1f1e9b8.
- PSM2 transport (ofi+psm2); flow control disabled.