RNTuple on DAOS
EP R&D Software, 74—Efficient Analysis

Javier Lopez-Gomez — CERN
<javier.lopez.gomezacern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland /\/, RO O—l— @

http 8 //root o CeI‘n/ Data Analysis Framework

http://root.cern/

@ RNTuple Goals

B B

Introduction

a

RNTuple Overview

[~

RNTuple on DAOS

]

Evaluation

Conclusion

=

RNTuple Checkpoint

1/20

RNTuple Goals

Reminder: HENP Event Data |/O

Why invest in tailor-made 1/0 sub system (TTree / RNTuple)

= Capable of storing the HENP event data model: nested, inter-dependent
collections of data points

Performance-tuned for HENP analysis workflow (columnar binary layout,
custom compression etc.)

= Automatic schema generation and evolution for C++ (via cling) and
Python (via cling + PyROOT)

Integration with federated data management tools (XRootD etc.)

Long-term maintenance and support

2/20

RNTuple Goals

= Less disk and CPU usage for same data content

= 25% smaller files, x2-5 better single-core performance
= 10GB/s per box and 1GB/s per core sustained end-to-end throughput
(compressed data to histograms)

= Native support for object stores (targeting HPC)
= Lossy compression

= Systematic use of exceptions to prevent silent I/0 errors

= Getting ready for a new hardware landscape: architectural
heterogeneity, parallelism on all levels, blurring between device classes
(e.g. active storage, NV-DIMMs)

3/20

Introduction

ROOT TTree and RNTuple

= HEP analyses typically require access to many
events, but only a subset of their properties.

= TTree has been in use for 25 years (1+ EB X y Z mass
stored in ROOQT files!).
= However, not designed to fully exploit modern PPN —

hardware.

= RNTuple is the R&D project to evolve the
TTree I/0.

= Object stores are first-class citizens.

4/20

Object Stores: Motivation

Issues with traditional storage stack

= Designed for spinning disks (few 10PS): /0 coalescing, buffering, etc,
became less relevant for modern devices.

= POSIX I/0 (strong consistency), has been acknowledged as a major
problem for parallel filesystem scalability.

Modern object stores overcome these limitations.

= GET and PUT primitives; objects accessed via a unigue object identifier
(OID).

= Object stores may have an important role in next-generation data
centers.

5/20

Why Intel DAOS?

= Modern fault-tolerant object store optimized for high bandwidth, low
latency, and high IOPS. Foundation of the Intel exascale storage stack.

= Optimal use of Intel Optane DC persistent memory and NVMe SSDs
(access time in the order of us).

= Argonne’s Aurora’ 1/0 system will be based on DAOS.

= Experience acquired supporting this in RNTuple can be reused for other
object stores.

"https://alcfanl.gov/aurora
6/20

RNTuple Overview

RNTuple: Architecture Overview

Event iteration
Looping over events for reading/writing

Logical layer / C++ objects
Mapping of C++ types onto columns, e.g.
std::vector<float> +— index column and a value column

Primitives layer / simple types
“Columns” containing elements of fundamental types (float,
int, ..) grouped into (compressed) pages and clusters

Storage layer / byte ranges
(RPageSourceXxx, RPageSinkXxx)

POSIX files, object stores, ...

Approximate equivalent of TTree and RNTuple classes:
TTree ~ RNTupleReader
RNTupleWriter
TTreeReader =~ RNTupleView
TBranch ~ RField
TBasket ~ RPage
TTreeCache ~ RClusterPool

7120

RNTuple: On-disk File Format

fid
T T T T T T O T [IITTT1
— e LRy

i —_—
Anchor Header Page Footer

Cluster

struct Event {
int fId;
vector<Particle> fPtcls;
b

struct Particle {

H
vector<int> fIds;

’

Pages: Array of fundamental types (maybe compressed); order of

~ tens of KiB, but tunable at write time.
Cluster: Collection of pages for a certain range of events, e.g. 1-1000.
Page group: pages on a given cluster that contain instances of the same

data member.

Anchor/Header/Footer: Schema information + location of pages/clusters.

8/20

RNTuple on DAOS

DAOS Overview: Architecture

Pool 1
Pool 2 Pool 3
Server 1 Server 2

Server 3

Target 1
Target 2
Target 3
Target 4
Target 1
Target 2
Target 3
Target 4
Target 1
Target 2
Target 3
Target 4

System: a set of DAOS servers connected to the same fabric.

Server: Linux daemon that exports locally-attached NVM storage.

Listens on
a management interface and 1+ fabric endpoints.

Target: static partition of storage resources (host controller, etc.). Avoids

contention, as each target has its private storage that can be directly
addressed over the fabric.

9/20

DAOS Overview: Pools, Containers and Objects

DAOQS pool AES Eemiatiner L DAOS object

— - p------"""" [key T value |
\ ™ | \

\ J _,—" —————————————

e

L

= Object: a Key-Value store with locality.

- The key is split into dkey (distribution key) and akey (attribute key).
- dkey affects data locality: DAOS guarantees that same dkey maps to same
target.

= Object class: determines redundancy (replication/erasure code).

10/20

DAQS Overview: Compatibility Layer

Legacy software can still use DAOS through its compatibility layer, i.e.

= POSIX filesystem (libdfs). Can be used either through 1ibioil (1/0 call
iterception) or dfuse (FUSE filesystem).

= MPI-I0. Provides DAQOS support through a ROMIO driver (MPICH and
Intel MPI).

= HDF5, Apache Spark, ...

..although throughput may not be on par to direct use of libdaos.

11/20

Back to RNTuple...

[T AT T O [T [ITITT]
— - e

Anchor Header Page Footer
Cluster

Alternatives for mapping Clusters/Pages to Objects’
OID-per-page. A sequential OID is assigned for each committed page;
constant dkey and akey.

OID-per-cluster. clusterindex — OID, dkey addresses individual pages in the
cluster; constant akey.

Improved OID-per-cluster. clusterindex — OID, column s dkey, akey
addresses individual pages.

2For the implementation, see: RDaos.cxx, RDaos.hxx, RPageStorageDaos.cxx, and
RPageStorageDaos.hxx.

12/20

https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RDaos.cxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/inc/ROOT/RDaos.hxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/src/RPageStorageDaos.cxx
https://github.com/root-project/root/blob/master/tree/ntuple/v7/inc/ROOT/RPageStorageDaos.hxx

User (rather: file catalog) Interface: file vs. DAOS

auto ntuple

auto X
auto y
auto z
auto mass
for (auto

W ooc
}

i

= RNTupleReader::Open("DecayTree",
"./B2HHH~zstd.ntuple");

ntuple->GetView<double>("x");
ntuple->GetView<double>("y");
ntuple->GetView<double>("z");
ntuple->GetView<double>("mass");

: ntuple->GetEntryRange()) {

3UUIDs are not meaningful to users (common problem in object stores).

13/20

User (rather: file catalog) Interface: file vs. DAOS

auto ntuple

auto X
auto y
auto z
auto mass
for (auto

I ooc
}

i

= RNTupleReader: :0pen("DecayTree",
"daos://e6f8e503-e409-4b08-8eeb-7e4d77ccebbb:1/b4f6d9fc-e081-
41d4-91ae-41adf800b537");3

ntuple->GetView<double>("x");
ntuple->GetView<double>("y");
ntuple->GetView<double>("z");
ntuple->GetView<double>("mass");

: ntuple->GetEntryRange()) {

3UUIDs are not meaningful to users (common problem in object stores).

13/20

Evaluation

Environment
Experiments ran on the CERN Openlab DAOS testbed:

= 3 DAOS servers, 1 client node

= HFI: Omni-Path Silicon 100 + Omni-Path Edge 100 24-port switch

Test cases

Store/retrieve a 1.5GB LHCh dataset into RNTuple, in a variety of
conditions:

1. Constant page size (10 000), increasing cluster size. Observe the effect
of queuing many small read operations.

2. Increasing page size, constant cluster size (320 000). Impact of the 1/0
request size on the throughput.

14/20

OID-per-page, constant page size, increasing cluster size

(a) gen_1lhcb, no compression. (b) Lhcb, no compression.
[T | | | [T | |
2 - - 3 =
W w
@ @
& &
= = 2 - —
=1 5
Q. Q.
< 1+ —| =
on on
> >
o <} |
c lggg—a—= = s & —
L d L
LA A & = —& —7 &
0 i \] 0 b1 | L
20,000 80,000 320,000 20,000 80,000 320,000
40,000 160,000 40,000 160,000
Number of elements per cluster Number of elements per cluster

Local —A— dfuse (SX) —A— dfuse (RP_XSF) —B— libdaos (SX) —#— libdaos (RP_XSF)

15/20

OID-per-page, increasing page size, constant cluster size

(a) gen_1lhcb, no compression. (b) Lhcb, no compression.
[T [[[[T [[
52 Q
o ®2 [3
o £
5] 5
Q. Q.
ey ey
on 1 on
> > 11— —
<4 [
= =
[=
Yo 3 . E
LU s \ | [1| | |
20,00080,000 320,000 20,00080,000 320,000
40,000 160,000 40,000 160,000
Number of elements per page Number of elements per page

Local —A— dfuse (SX) —A— dfuse (RP_XSF) —B— libdaos (SX) —#— libdaos (RP_XSF)

16/20

OID-per-page vs. OID-per-cluster

(a) gen_lhcb, no compression. (b) Lhcb, no compression.
[T [[I [T [[

Throughput (GB/s)
Throughput (GB/s)

20,00080,000 320,000 20,00080,000 320,000
40,000 160,000 40,000 160,000
Number of elements per page Number of elements per page

—&— 0ID/page (SX) —A— 0ID/page (RP_XSF) —B— 0ID/cluster (SX)

17/20

Issuing many small /0 requests has a negative impact on the read
throughput.

= DAOS performs better with large page sizes, where it outperforms local
SSDs.

= RNTuple native DAOS backend outperforms dfuse in all cases.

= |OR measured 123 GB/s: number of processes/threads seems to be a
limiting factor.

RNTuple-to-DAOS mapping seems to have a performance impact.

18/20

Conclusion

Conclusion

= We expect object stores to have an important role in next-generation
data centers.

= RNTuple architecture decouples storage from
serialization/representation. Object stores are first-class.

= First prototype implementation of an Intel DAOS backend merged into
ROQOT's ‘master’ branch.

= Regular contact with DAOS development team; ongoing efforts to test
the backend in other cluster platforms, e.g. HPE DAOS testbed.

Next Questions

1. Further investigate reads not saturating the data link.

2. WIP: Optimize moving large amounts of existing HEP data to a
DAOS-based data center.

3. Implement and test Improved OID-per-cluster mapping.

19/20

RNTuple Checkpoint

RNTuple Status and Plans

In the last 6 months Upcoming steps
= Merged DAOS backend = Merge version 1 binary format
= Experimental support for S3 = Schema evolution
* CMSSW nanoAOD output module proof-of-concept
(Max’ IRIS-HEP project) * Finish up chains and merging
= Support for (aligned) friends = RVec support (important for RDF)
= RBrowser support = Double32 support
= Type casting (e.g. read float in = New HDF5 comparison
double) benchmarks

= Parallel page compression during
writing

= LHCC review input

20/20

RNTuple on DAOS
EP R&D Software, 74—Efficient Analysis

Javier Lopez-Gomez — CERN
<javier.lopez.gomezacern.ch>

EP R&D Software Working Group meeting, 2021-07-14

EP-SFT, CERN, Geneva, Switzerland /\/, RO O—l— @

http 8 //root o CeI‘n/ Data Analysis Framework

http://root.cern/

Evaluation — Hardware and Software Environment

[Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)

Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz

Numa nodes node0: 0-23.48-71 node1: 24-47,72-95 cpu Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz

System Memory 12x 32GB DDR4 rank DIMMs CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)

Optane DCPMM 12x 128GB DDR4 rank DIMMs Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz

Optane FW version 01.02.00.5395 Numa nodes node0: 0-23,48-71 node1: 24-47,72-95

BIOS version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020 System Memory 12x 16GB DDR4 rank DIMMs

Storage 4x1TB NVMe INTEL SSDPE2KX010T8 BIOS version: SE5C620.868.02.01.0011.032620200659 date: 03/26/2020

HFI 1x Intel Corporation Omni-Path HFI Silicon 100 Series. HFI 1 Intel Corporation Omni-Path HFI Silicon 100 Series.

HFI Firmware Termal Management Module: 19.9.0..208 ; Driver: 1.9.2.0.0 HFI Firmware Termal Management Module: 16.9.9.0.268 ; Driver: 1.9.2.0.0
Figure 1: Server nodes Figure 2: Client node

= DAOS 0.94, libfabric 1.7.2, libpsm2 11.2.78, and ROOT 1f1e9b8.
= PSM2 transport (ofi+psm2); flow control disabled.

	RNTuple Goals
	Introduction
	RNTuple Overview
	RNTuple on DAOS
	Evaluation
	Conclusion
	RNTuple Checkpoint
	Appendix

