

Classification of signal and background in associated $t\bar{t}H$ production via a multi-class neural network.

Konrad Helms

University of Göttingen

Supervised by Prof. Dr. A. Quadt

July 16, 2021

BSc Student Seminar Talk, 2021

THIS IS YOUR MACHINE | FARNING SYSTEM? PILE OF LINEAR ALGEBRA. THEN COLLECT THE ANGLIERS ON THE OTHER SIDE JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT https://xkcd.com/1838

Introduction

Production Modes and Background Processes

Neural Networks

Results of the Bachelor's Thesis

Introduction

Introduction

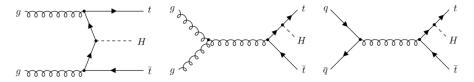
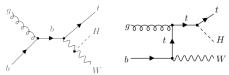
- mid-20th century: Standard Model
- rapid technological advances:
 - ightarrow 1995: top quark *t* discovered by DØ and CDF
 - \rightarrow 2012: Higgs boson H discovered by ATLAS and CMS
- since then, many measurements of the Higgs boson's properties to find constraints on couplings

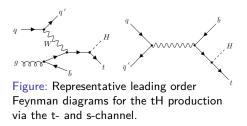
 \rightarrow 2018: observation of Higgs-associated top anti-top quark pair production $t\bar{t}H$

Production Modes and Background Processes

Production Modes and Background Processes

- top-Higgs coupling not only sensitive to properties of the Higgs boson, but also to yet undiscovered particles
- in the past for example: $H
 ightarrow b ar{b}, \ H
 ightarrow W^+ W^-$
- not possible with the top quark, $m_H pprox 125 \, {
 m GeV}$, $m_t pprox 173 \, {
 m GeV}$
- instead of the decay, we measure $t\bar{t}H$ production (and tH production)


Figure: Three possible tree level Feynman diagrams in proton-proton collisions for the $t\bar{t}H$ production mode.

Production Modes and Background Processes

• another way of measuring the top-Higgs coupling: Higgs boson production in association with a single top quark *tH* Figure: Representative Feynman diagrams for the tH production with an on-shell W boson in the final state.

Production Modes and Background Processes

• most prominent background processes: $t\bar{t} + b$, $t\bar{t} + light$ jets, $t\bar{t} + c$

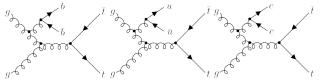


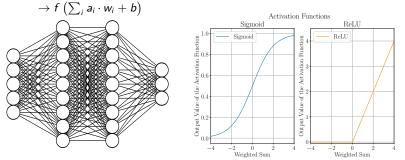
Figure: Representative Feynman diagrams for the $t\bar{t} + b$, $t\bar{t} + \text{light jets}$, $t\bar{t} + c$.

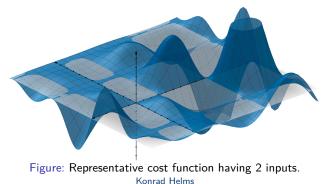
• top quark decay dominated by $t \to Wb$ with subsequent W boson decays: $W \to q\bar{q}'$ or $W \to \ell \nu$

Neural Networks

Neural Networks Structure of Neural Networks

- nodes hold an activation *a*, connections are assigned a weight *w* and a bias *b*
- weighted sum: $\sum_i a_i \cdot w_i + b$
- apply activation functions Sigmoid (1d), Softmax (multi-dim.), ReLU (1d)




Figure: Neural network structure (left) with a 5 node input layer, 2 hidden layers, 3 node output layer and two activation functions (right).

Neural Networks

Structure of Neural Networks

- cost function *C*: input = all weights and biases, parameterised by neural network's behaviour over a number of training events, output = cost
- for a single training example: loss $= -\sum_{i=1}^{K} y_i \cdot \ln(a_i)$, a_i activations, y_i correct activation of *i*-th output node
- learning = minimising the cost function *C*, in this thesis $\sim 10^3$ inputs
- gradient descent: calculate $-\nabla C$, take a small step, repeat until we reach a minimum

- 2 datasets:
 - small dataset: up to 280,000 Monte Carlo events
 - large dataset: up to 1,900,000 Monte Carlo events
- small dataset:

Region	#leptons	#jets	#b-tags			
			@60%	@70%	@77%	@85%
6 jet, high $\frac{\geq 6j}{\geq 4b}$	>6	>6	≥ 4	> 4	≥ 4	> 4
6 jet, $low_{\leq 4b}^{\geq 6j}$	=1	20	< 4			
5 jet, high ^{5j} ≥4b	-	=5	\geq 4			
5 jet, low ^{5j}		_0	< 4			

Table: The non-overlapping event regions of the small dataset.

Iarge dataset:

Region	#leptons	#jets	# b-tags at 85% WP
6 jet $\geq 4b^{\geq 6j}$	-1	≥ 6	\geq 4
5 jet $\geq 6j$ $\geq 4b$		= 5	\geq 3

Table: The non-overlapping event regions of the large dataset.

- binary class. neural networks: $t\bar{t}H$ vs. background (excluding tH)
- 5-class neural networks: $t\bar{t}H$, tH, $t\bar{t} + b$, $t\bar{t} + c$, $t\bar{t} + light$ jets
- 4-class neural networks: $t\bar{t}H$, tH, $t\bar{t} + b$, $t\bar{t} + light$ jets and c
- 3-class neural networks: $t\bar{t}H$, tH, $t\bar{t}$ + jets

Results of the binary class. neural networks:

small dataset:

Neural network (NN)	Performance increase [%]				
	avg. training	avg. testing	avg. overall		
3 layer NN, 6 jet incl.	0.53	0.45	0.49		
5 layer NN, 6 jet incl.	0.95	0.71	0.83		
3 layer NN, 6 jet high	1.08	0.97	1.03		

Table: Average performance increase with respect to the BDTs used in previous analyses.

- large dataset:
 - performance decrease by 0.26%
 - but: BDTs trained on older ntuples and tested on tighter region
 - \implies only partially comparable results!

Results of the multi-class neural networks:

small dataset:

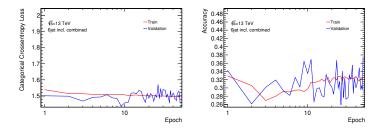
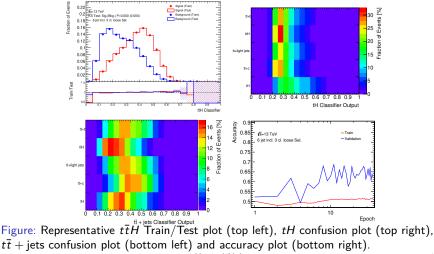



Figure: Representative categorical crossentropy loss function (left) and accuracy (right) for the 5-class neural network.

Results of the multi-class neural networks:

• large dataset: (3-class neural network delivered the best results)

Thank you for your attention.

Appendix

Class	Number of Monte Carlo events						
	5 jet low	5 jet high	6 jet low	6 jet high	5 jet	6 jet	
	smaller dataset larger dataset						
tīH	81,160	85,081	205,230	215,050	1,407,148	1,236,630	
tH	3,270	2,853	7,336	6,978	83,478	47,006	
$t\overline{t} + light jets$	10,284	7254	27557	22063	1,600,000	3,607,537	
$t\overline{t} + b$	136,987	97,837	278,391	235,345	1,600,000	1,919,591	
$t\overline{t}+c$	3,204	382	6410	771	1,600,000	1,324,606	

Table: Number of Monte Carlo events in each class and region in the smaller and larger dataset.

Region	Event yield \pm Poisson error							
	tH	tŦH	$t\overline{t} + light$ jets	$t\overline{t}+c$	$t\overline{t}+b$			
Small dataset								
6 jet, high $\geq 6j \\ \geq 4b, hi$	3.4 ± 1.8	213.1 ± 14.6	$2,638.7\pm51.4$	109.8 ± 10.5	$2,669.4 \pm 51.7$			
6 jet, $low_{\leq 4b, lo}^{\geq 6j}$	3.3 ± 1.8	207.0 ± 14.4	$3,239.6\pm56.9$	765.4 ± 27.7	$3,131.3\pm56.0$			
5 jet, high ^{5j} ≥4b,hi	$\textbf{3.4}\pm\textbf{1.8}$	64.4 ± 8.0	897.7 ± 30.0	55.0 ± 7.4	$1,013.6 \pm 31.8$			
5 jet, low ^{5j}	3.3 ± 1.8	64.4 ± 8.0	$1,240.7\pm35.2$	396.8 ± 19.9	$1,403.9\pm37.5$			
6 jet, high & low	6.7 ± 2.6	420.1 ± 20.5	$5,878.3\pm76.7$	875.2 ± 29.6	$5,800.7\pm76.2$			
combined								
Large dataset								
6 jet $^{\geq 6j}_{\geq 4b, @85\%}$	22.3 ± 4.7	$1,311.7\pm36.2$	$50,897.0\pm 225.6$	$30,689.8 \pm 175.2$	$22,354.3 \pm 149.5$			
5 jet $\geq \frac{5}{3b}, \frac{6j}{285\%}$	81.4 ± 9.0	$1,277.6\pm35.7$	$108,241.0\pm 329.0$	$125,979.4\pm 354.9$	$54,153.2\pm 231.7$			

Table: The event yield and Poisson error in each category of the small and large datasets.

Further Plots: Binary Classification Neural Networks

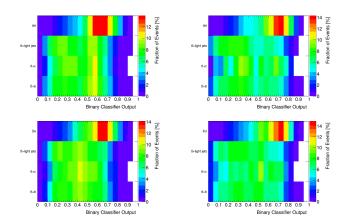


Figure: Confusion plots of the binary classification neural networks, trained on the 5 jet low (top left) and high (top right) region, and the 6 jet inclusive low (bottom left) and high (bottom right) region of the small dataset.

Further Plots: Binary Classification Neural Networks

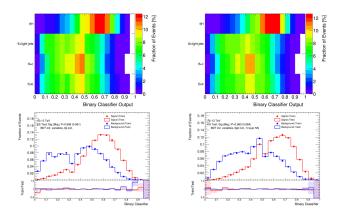


Figure: Confusion plots (top) and representative Train/Test plots (bottom) of the 3 layer (left) and 5 layer (right) binary classification neural networks, trained on the 6 jet inclusive combined region.

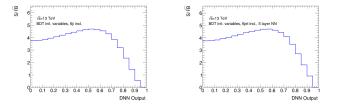
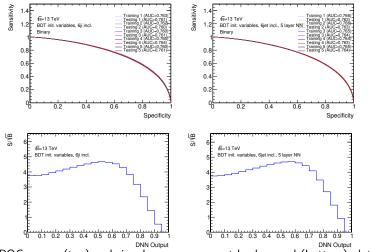
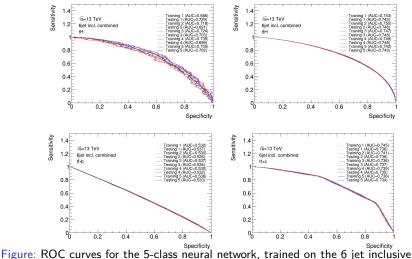


Figure: Representative signal-over-square-root-background plots for the 3 layer (left) and 5 layer (right) binary classification neural networks, trained on the 6 jet inclusive combined region of the small dataset.

Further Plots: Binary Classification Neural Networks




 Figure: ROC curves (top) and signal-over-square-root-background (bottom) plots of

 the 3 layer (left) and 5 layer (right) binary class. neural networks, trained on the small

 dataset.
 Konrad Helms
 8 / 17 B

Further Plots: 5-class Neural Network, small dataset

combined region of the small dataset.

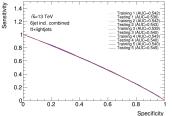


Figure: ROC curve for the 5-class neural network, trained on the 6 jet inclusive combined region of the small dataset.

Further Plots: 4-class Neural Networks



Figure: Confusion plots for the 4-class neural network, trained on the 5 jet region of the large dataset.

Further Plots: 4-class Neural Networks

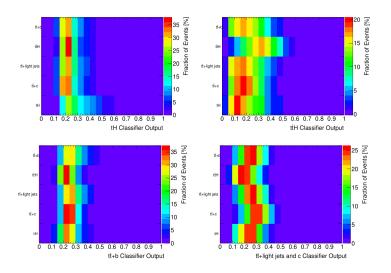


Figure: Confusion plots for the 4-class neural network, trained on the 6 jet inclusive region of the large dataset.

Further Plots: 4-class Neural Networks

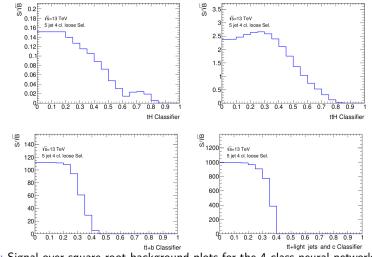


Figure: Signal-over-square-root-background plots for the 4-class neural network, trained on the 5 jet region of the large dataset.

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

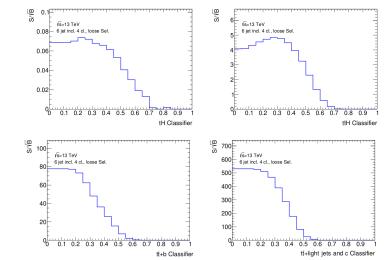


Figure: Signal-over-square-root-background plots for the 4-class neural network, trained on the 6 jet inclusive region of the large dataset.

	5 jet			(5 jet inclusive	e
	AUC avg.	AUC avg.				
	training	testing	overall	training	testing	overall
tτH	0.7095	0.7090	0.7093	0.7400	0.7400	0.7400
tH	0.5918	0.5888	0.5903	0.6938	0.6898	0.6918
$t\overline{t}$ + jets	0.6875	0.6875	0.6875	0.7260	0.7259	0.7260

Table: Average AUCs of the ROC curves during training, testing and overall average of the 3-class NN, trained on the large dataset, for each output class.

	5 jet			6 jet inclusive		
	AUC avg. AUC avg. AUC avg.		AUC avg.	AUC avg.	AUC avg.	
	training	testing	overall	training	testing	overall
tīH	0.7193	0.7193	0.7193	0.7410	0.7163	0.7287
tH	0.6135	0.6100	0.6118	0.7020	0.6963	0.6992
$t\overline{t} + b$	0.5313	0.5313	0.5313	0.5318	0.5318	0.5318
$t\overline{t} + light and c$	0.5695	0.5693	0.5694	0.5833	0.5833	0.5833

Table: Average AUCs of the ROC curves during training, testing and overall average of the 4-class NN, trained on the large dataset, for each output class.

	5 jet			6 jet inclusive		
	AUC avg.	AUC avg.	AUC avg.	AUC avg. AUC avg.		AUC avg.
	training	testing	overall	training	testing	overall
tīH	0.7235	0.7230	0.7233	0.7483	0.7480	0.7482
tH	0.6295	0.6265	0.6280	0.6953	0.6928	0.6941
$t\overline{t} + b$	0.5478	0.5480	0.5479	0.5778	0.5778	0.5778
$t\overline{t}+c$	0.6333	0.6333	0.6333	0.7393	0.7388	0.7391
$t\overline{t} + light jets$	0.5740	0.5738	0.5739	0.5948	0.5950	0.5949

Table: Average AUCs of the ROC curves during training, testing and overall average of the 5-class NN, trained on the large dataset, for each output class.