

FOR LONG-LIVED PARTICLES IN CMS

Karri Folan DiPetrillo [Fermilab] on behalf of the CMS collaboration

DPF 2021

Why long-lived particles

Most pressing issue for LHC physicists: We need to make sure that if we're producing BSM physics at the LHC, we don't miss it

BSM long-lived particles (LLPs)

Well motivated, challenging signatures May have evaded prompt/missing E_T searches

Understanding LLP sensitivity

Acceptance driven by detector volume LLP decay follows an exponential

Efficiency driven by everything else

often non standard

triggers
reconstruction
backgrounds

New emphasis: low mass LLPs

Most previous LLP searches targeted O(TeV) BSM particles

Challenges

decay products p_T~30 GeV

hadronic LLP decays often favored eg. if X decays via Higgs portal

→difficult to trigger on gluon gluon fusion (ggF) production

backgrounds: standard model LLPs, randomly crossing tracks, material interactions

Efficiency tends to drop with m_X

Targeting h→LLPs in CMS

Karri Folan DiPetrillo

Three strategies highlighted in this talk

Displaced di-muon with scouting Decays in Tracker $L_{XY} < 11 \text{ cm}$

> Displaced jets Decays in Tracker L_{XY} < 60 cm

Hadronic decays in the Muon System Endcaps $2.5 < L_{XY} < 7 m$ 6.5 < Z < 10 m

5

Di-muon with scouting

New! EXO-20-014

Leptonic decay in Tracker

Start with leptonic decays: look for di-muon displaced vertex $h \rightarrow ZdZd \rightarrow \mu\mu+XX$ or $b \rightarrow \phi X \rightarrow \mu\mu+X$

Novel use of *data scouting* to access O(GeV) LLP decays to two muons scouting: saves more events but with reduced, trigger level, event content this analysis: events with ≥ 2 muons, $p_T > 3$ GeV, vertex $L_{XY} < 11$ cm

Di-muon with scouting

New! EXO-20-014

Leptonic decay in Tracker

Remaining Backgrounds: SM resonances non-resonant SM b→µµ+X random track crossings

Strategy: categorize & perform bump-hunts in m(μμ) p^{τμμ}, muon isolation, vertex L_{XY}

> Results: stringent limits on a range of BSM scenarios

back-up: sensitivity to $b \rightarrow \phi + X$ comparable with LHCb!

Inclusive displaced jets

Hadronic decay in Tracker

For hadronic decays: story begins with flagship analysis (from 2020) Analysis strategy: Select events with ≥1 displaced vertex reconstructed from tracks associated to a pair of jets

2012.01581

Z+displaced jets

Hadronic decay in Tracker

New! EXO-20-003

Analysis goal: follow up inclusive displaced jets specifically targeting light LLP decays to b-jets

Trigger on Zh production less boosted than inclusive analysis

Require ≥ two displaced jets no displaced vertex required to retain efficiency to tertiary vertices

Results 3.5 ± 1.8 events expected 3 observed Variables used to tag displaced jets based on EXO-16-003

Decays in Muon Endcaps New! 2107.04838

Hadronic decay in Muon Spectrometer

Expand reach: look for LLP decays in Muon System

Goal: Extend acceptance to longer lifetimes than Tracker Bonus: much lower backgrounds due to shielding (12< λ <27)

Novel reconstruction technique: use Muon Endcaps as a sampling calorimeter!

hadronic decay products shower in steel of return-yoke

results in a cluster of many hits in Cathode Strip Chambers

efficiency ~ LLP energy, not mass!

Background: punch through, SM decays in flight from pile-up jets, collision/cosmic muon brem

Karri Folan DiPetrillo

Decays in Muon Endcaps New! 2107.04838

Hadronic decay in Muon Spectrometer

To trigger: LLP decays after calorimeter produce E_T^{miss} $E_T^{miss} > 200 \text{ GeV}: ~1\%$ efficiency for ggF

Selection reject clusters near muons/jets geometric & timing cuts $\Delta\phi$ (cluster,pT^{miss}) < 0.75

N_{hits} >130

Results 2.0 ± 1.0 events expected 3 observed

Conclusions

Three new LLP results from CMS

Displaced di-muon with scouting* Z + displaced jets Hadronic Decays in the Muon Endcaps*

Enable new sensitivity to low mass LLPs

including well motivated SM higgs scenarios

Keep an eye out!

Many places where new physics could be hiding @LHC Several Run 2 LLP searches still in the works Run 3 = exciting opportunity for discovery

BACKUP SLIDES

How to search for LLPs

Direct Detection of Charged LLPs

anomalous ionization time of flight infer decay via missing hits

Indirect Detection via decay products

Tracking

Calorimetry

impact parameter secondary vertex

shower shape delay

Common challenges

trigger, data format, reconstruction, non-standard backgrounds, person power

Connecting detector and lifetime

CMS Full Run 2 LLP Results

Karri Folan DiPetrillo

CMS Full Run 2 LLP Results

Disappearing Tracks	<u>EXO-19-010</u>	<u>2004.05153</u>
Delayed jets	<u>EXO-19-001</u>	<u>1906.06441</u>
Inclusive Displaced jets	<u>EXO-19-021</u>	<u>2012.01581</u>
Multi-track Displaced vertices	<u>EXO-19-013</u>	<u>2104.13474</u>
Z+displaced jets	<u>EXO-20-003</u>	_
Hadronic Decays in the CSC	<u>EXO-20-015</u>	<u>2107.04838</u>
Dimuon DV scouting	<u>EXO-20-014</u>	-

CMS tracking

Iterative approach to tracking Reduce combinatorics for more difficult tracks

With respect to ATLAS

- slightly lower efficiency
- much lower fake rate
- no need for LLP data stream!
- global/displaced tracks @HLT

Useful radii

25 cm - Pixel/strip transition60 cm - Inner/Outer Barrel transition1.1 m - End of tracker

New pixel detector (2017+2018) Efficiency: 5-10% Fake rate: halved

Impact parameter resolution: 25-40%

Di-muon with scouting BR

1412.0018

Dimuon with scouting variables

Dimuon with scouting $b \rightarrow \phi X$

for $c\tau = 10 \text{ mm}$

Displaced jet backgrounds

Material interactions

reject with material veto

Real SM LLPs

2nd largest track d0-significance sum track d0-significance* DV Lxy-significance* < 3 tracks prompt tracks per jet

Randomly crossing tracks

DV-dijet p⊤ consistency DV-dijet position consistency* vertex track multiplicity*

*input to Boosted Decision Tree

EXO-19-02

Inclusive displaced jets

Hadronic decays in Tracker

Results: 0.75 ± 0.60 events expected, 1 observed

Room for improvement

1. very low mass, $m_X = 15 \text{ GeV}$ decay products merged into one jet

2. decays to b-jets ~10x worse than light-jets reduced tracking/vertexing efficiency due to b-meson lifetime

EXO-19-02

Z+displaced jets

CMS Shielding

12-27 nuclear interaction lengths

Karri Folan DiPetrillo

Decays in Muon Endcaps

New! 2107.04838

Decays in Muon Endcaps

New! 2107.04838