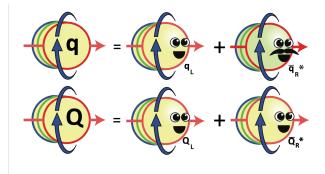
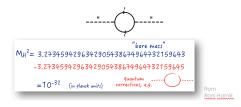
Search for pair production of vector-like quarks in the Wb+X final state using the full Run 2 dataset of *pp* collisions at $\sqrt{s} = 13$ TeV from the ATLAS detector


Joseph Haley, Angela Burger, **Evan Van de Wall**, Joshua Stewart

Oklahoma State University

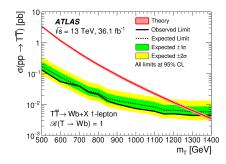

July 12, 2021

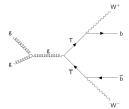
VLQ Introduction

- Spin 1/2 particles with color charge
- Left and right chiralities behave the same
 - Vector-like interaction with weak force
- Mass not from Higgs boson
- Decay to SM boson and a 3^{rd} generation quark

Why VLQ?

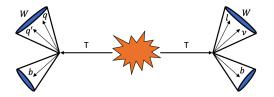
- $\bullet\,$ Quantum corrections from top quark \to quadratic divergence
 - Called the "Hierarchy Problem"

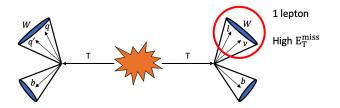

 $M_{H}^2 \sim 10 - 9 = 1$ (in units of ~100 GeV squared)


- VLT corrections \rightarrow removes quadratic divergence
- VLQs are included in many models that solve the Hierarchy Problem

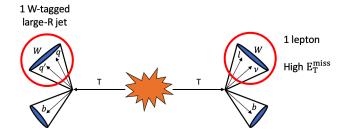
Evan Van de Wall (OSU)

Our Search


- Pair production of VLT in Wb+X final state
 - Require: $T \rightarrow Wb \rightarrow l\nu b$
 - Optimize other: $T \rightarrow Wb \rightarrow qq'b$
- Model independent
- Improve limits by using full 140 fb⁻¹ Run 2 dataset


JHEP 10 (2017) 141

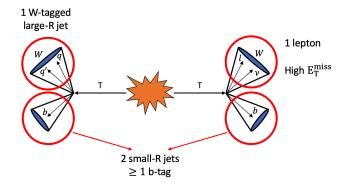
3 🕨 🖌 3


▶ ◀ Ē ▶ Ē ∽ ९ ୯ July 12, 2021 5 / 13

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- 4 ∃ ▶

• Reduces multijet background

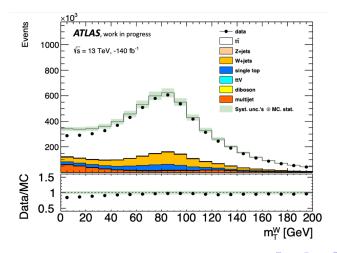


→ 米温→ 米温→

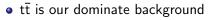
< 一型

3

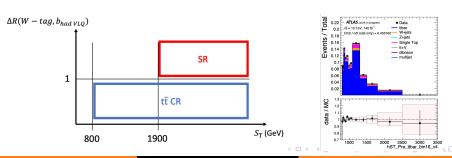
• W-boson will be boosted


• Reconstruct VLT candidates to minimize $\Delta M(VLTs)$

э


A E A

Background Processes


- tt and W+jets main background
 - No correction applied to any MC

tt MC Correction

- tī MC mismodels p_{T} related variable at high p_{T}
- Derive correction as a function of $S_{\rm T}$
 - $S_{\rm T}$ is the scalar sum of all $p_{\rm T}$

Events / Tota

data / MC

0.15

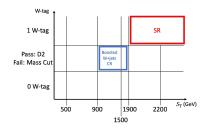
0.1

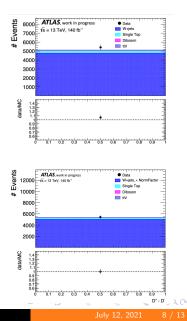
0.9 0.8 0.7 50

ATLAS, work in prog

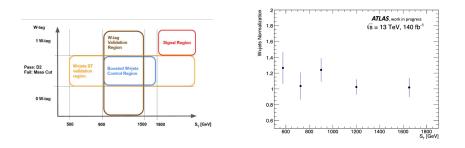
0.25

Data


Single Top Z+jets

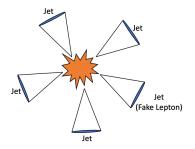

2000 2500 S. [GeV] (ttbar

multiie


W+Jets MC Correction

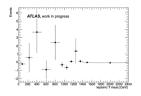
- W+jets is the second dominate background process
- Boosted W+jets CR Define correction
- Using charge assymmetry
 - *N*(*W*+) − *N*(*W*−)

- W+jets is the second dominate background process
- Boosted W+jets CR Define correction
- W+jets S_T VR Check S_T dependence
- W-tag VR Check W-tag dependence

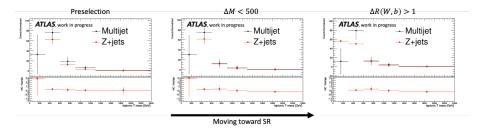


э

< ∃ >

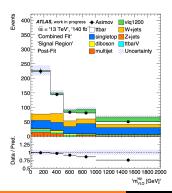

Multijet Estimate

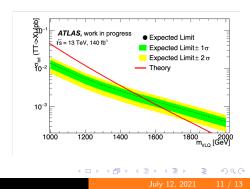
- Many collisions at the LHC result in a multijet event
- Jets misidentified as leptons
- Multijet events not well modeled in MC
- Use a data-driven method
 - Fake Factor Method



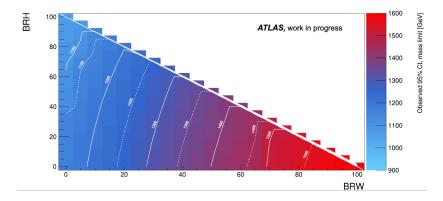
Multijet Estimate

- The Fake Factor results in a negative estimate in the signal region
- Scale Z+jets to estimate the multijet
- Reduced the number of bins and compared the shapes




• Shapes agree well after each cut

Final Fit


- Apply MC corrections to signal region
- Final fit done as a function of leptonically decaying VLT mass
 - The data in this plot is just the sum of background
- Expected limit is around 1550 GeV
 - This is about a 200 GeV improvement with respect to the 36.1 fb^{-1} limit

Final Fit

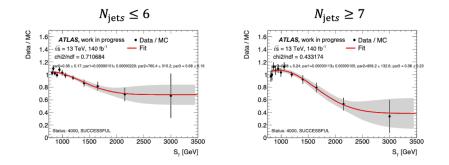
Scan different branching ratios

э

< A

- Search for pair production of vector-like quarks in Wb+X final state
 - Require one VLT decay to leptonically decaying W boson and bottom quark
 - Optimize the second VLT to decay to hadronically decaying W boson and bottom quark
- $\bullet~t\bar{t}$ and W+jets are the two main backgrounds
 - Correct mismodelling in control/validation regions
- Multijet background will be estimated by scaling Z+jets
- The expected limit has around a 200 GeV improvement with respect to the 36.1 fb^{-1} limit

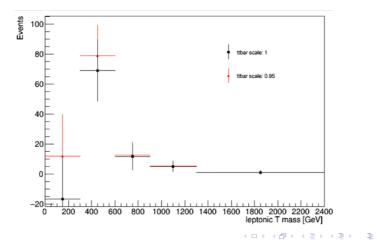
BACKUPS


・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2

Evan Van de Wall (OSU)

tt Correction


- Fit data/MC ration as a function of $S_{\rm T}$
- Fit function is a Gaussian with a constant offset
- Fit is done in two bins of number of jets (N_{jets})

→ ∃ →

Multijet: 1st Bin Sensitivity

- The first bin (0-300 GeV) is very sensitive to the $t\bar{t}$ normalization
- Changing the normalization by 5% results in an almost 200% change in the first bin

