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Anomaly Detection in HEP
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• Anomaly detection (AD) = identify features of the data that are 
inconsistent with a background-only model  

- “Unsupervised” learning = train on data; no signal hypothesis 

• At the Large Hadron Collider: no recent new physics + many 
exclusion results → develop strong model independent search 
program 

➡Focus here on resonant new physics in hadronic final states

J. Gonski19 May 2021

A Word on Jets
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• Jets = sprays of hadronic particles reconstructed with clustering into a cone  
•Higher mass exclusions for new particles + high energy machine = high momentum 
outputs  
- Boosting = collimation of decay byproducts  (multiple decays may overlap & reco as a 

single jet) 
- Substructure: synthesizing correlations between jet constituents to determine particle 

content in “fat” (large radius) jet 
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Autoencoders for AD
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• Autoencoder: generative model that encodes input in lower-dimensional 
latent space, decodes from latent space, and checks reconstruction error

• Variational autoencoder: perform Bayesian inference by sampling from a 
multivariate Gaussian latent space 

• Variational RNN: recurrent neural network (RNN) that updates a VAE latent 
space at each time step; accommodates variable-length input sequences VAE Cell
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Figure 2. A Variational Autoencoder with a Gaussian latent space parametrization.

where ✏ is sampled from a unit isotropic normal distribution ✏ ⇠ N (0, 1) [10].

The VAE loss function includes both a reconstruction error term as well as an additional Kullback-
Leibler (KL)-Divergence term from a chosen prior distribution p(z) to the approximate posterior
distribution q(z|x):

L = |y � x|2 + DKL(q(z|x)||p(z)). (1.3)

For the prior, it is common to choose a unit isotropic Gaussian centered at the origin, as the KL-
Divergence from a Gaussian prior to a Gaussian approximate posterior takes on a closed form
solution [11].

Variational Autoencoders provide a number of improvements over standard Autoencoders, both as
generative models [10] and as anomaly detection tools [12]. The inclusion of a KL-Divergence
term in the loss function motivates the architecture to more appropriately model unique classes of
data. It also acts as another discriminatory metric, as anomalous elements are expected to have
both a large reconstruction error and a large KL-Divergence when compared to nominal elements.

While VAEs have shown promise in the task of jet-level anomaly detection, they have a number of
drawbacks. Most notably, VAEs are a fixed-length architecture, and cannot accommodate a variable
number of inputs. When modeling jets via their constituent four-vectors, it becomes necessary to
only process at most N constituents, and zero-pad the input layer when processing a jet with
a number of constituents less than N . In classifier models, this is common and benign, as the
loss function depends only on the output of the network and the ground truth that it is trying to
reproduce. However, in a VAE, the input layer’s neuron values are a part of its loss function (due to
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Why VRNN?
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• Variational RNN: recurrent neural network (RNN) that updates a VAE 
latent space at each time step; accommodates variable-length input 
sequences 
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Figure 1. A Variational Recurrent Neural Network cell. The x(t) and y(t) layers represent respectively
the input constituent and reconstructed constituents’ four-momentum components pT , ⌘, and �. The
phix and phiz layers are feature-extracting layers which encode a representation of the features in the
input layer x(t) and latent space z respectively. h(t � 1) represents the current time-step’s hidden
state, which is updated each iteration via a transition function between h(t�1, phix, and phiz carried
out by a Gated Recurrent Unit (GRU). At each timestep, the prior distribution defined by µt and �t

is determined from the current hidden state

In Black Box 2, our model shows no significant excesses. Furthermore, the behavior of

the Event Score consistently a�ects the distributions of both Black Box 2 and the Background

dataset. It is important to note that the model was trained independently on each dataset,

and the resulting Event Scores are from entirely unique sets of network weights.

Figure 6 shows our results for Black Box 3. Our model is specifically sensitive to boosted

final states, and as a result, we are insensitive to the signal present in this Black Box.

0.3 Lessons Learned

This challenge presented a highly accessible avenue for development of our model. We are

particularly surprised by the e�ect of our pre-processing method on the performance of the

3

Figure 3. A Variational Recurrent Neural Network cell.

The details of the VRNN architecture used in this study are as follows: the number of neurons in
each intermediate layer, including the hidden state and feature extracting layers, but not including
the latent space and its µ and � layers, is 16. The latent space is chosen to be two-dimensional.
Since constituent four-vectors of jets are being modeled, the input x(t) and output y(t) layers are
three dimensional, corresponding to the pT , ⌘,and � of each constituent. ReLU [16] activations are
used in each layer of the network, except for � and �t, which have softmax [16] activations, and z

and y(t), which have linear activations.

The constituents of an input jet are processed sequentially, one per time-step. Each time-step
contributes a loss based on the VAE loss function:

L(t) = MSE + �DKL, (2.7)

where � is a factor which weights the KL-Divergence contribution relative to the MSE reconstruc-
tion loss.

Since harder constituents contribute more information toward the identification of jet substructure,
� is defined to be be a function of constituent pT fraction such that lower pT constituents obtain a
lower weight in the loss function. Furthermore, since a constituent’s pT fraction depends directly on
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VRNN Cell

origin, but rather a multivariate Gaussian whose means and variances in each dimension are
determined from the current time-step’s hidden state.

The inclusion of a learned, time-dependent prior distribution is an important component of the
VRNN architecture. Without this feature, the decoder network would only be able to access in-
formation about the current time-step from the hidden state, and the loss function would motivate
the posterior distributions for each time-step to be identical. As a result, this allows the VRNN the
flexibility to model complex structured sequences with high variability, as is expected from a jet
represented by a sequence of constituent four-vectors. In more detail, each time-step’s latent space
prior distribution parameters µt and �t are functions of the current time-step’s hidden state [13]:

zt ⇠ N (µt, �t), where µt, �t = fprior(ht�1). (2.2)

Similarly, the latent space approximate posterior is defined by parameters µ and � which are func-
tions of the input’s extracted features �x and the hidden state ht�1:

z ⇠ N (µ, �), where µ, � = fpost.(�x, ht�1). (2.3)

The generated output is then decoded from features extracted from the latent space distribution
�z = f(z), while also being conditioned on the hidden state:

y(t) = fdec(�z, h(t � 1)). (2.4)

A loss for each time-step L(t) can then be computed by incorporating both the reconstruction
error between the input constituent x(t) and generated output constituent y(t), as well as the KL-
Divergence between the approximate posterior z and the learned prior zt. A constant � is also
included which weights the KL-Divergence term’s contribution to the loss:

L(t) = |y(t) � x(t)|2 + �DKL(z||zt). (2.5)

An overall loss L over the sequence is then computed by averaging the individual time-step losses
over the length of the sequence N :

L =
L(t)

N
. (2.6)

This loss function performs the same role as the VAE’s loss function, acting both as an appropriate
means of optimizing the architecture as well as a discriminatory quantity between nominal and
anomalous elements of the dataset.
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➡Train over data using large-R jet constituent 4-vectors as inputs 
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Dataset 
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• LHC Olympics dataset: Pythia 
generated + Delphes detector 
simulation (no pileup)  

• Signal: 3.5 TeV Z’ → 500 GeV X 
+ 100 GeV Y 

- Two substructure hypotheses: 2-
pronged and 3-pronged X/Y 
decays 

• Reconstruction = two large-
radius (R=1.0) jets 

- Trigger: 1 large-R jet with pT > 
1.2 TeV

Benjamin Nachman

The LHC Olympics 2020: 
A Community Challenge for Anomaly 

Detection in High Energy Physics

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Lawrence Berkeley National Laboratory

bpnachman.com @bpnachman bnachman
bpnachman@lbl.gov

LHC 
Reinterpretation 

Workshop
Feb. 17, 2021

2101.08320https://lhco2020.github.io/homepage/

➡arXiv:2101.08320
11The dataset
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https://zenodo.org/record/4536624#.YJw3pGZKijQ
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Alignment
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Figure 4. Leading jet mass vs Anomaly Score distributions before (left) and after (right) applying the
boosting method detailed in Algorithm 1.

3.2 Sequence Ordering

After the boosting step has been performed, the effect of sequence ordering on the input con-
stituents has additionally been investigated. In fixed architecture models, such as VAEs or image-
based Convolutional Neural Networks (CNNs), the ordering of constituents in the list of training
inputs is seldom important. However, in recurrent architectures such as the VRNN, choosing a
sequence ordering method that highlights important sequence features can boost performance.

The objective of this study is to build a model which can differentiate between isotropic jets result-
ing from soft QCD interactions, and jets with multiple cores resulting from the hadronic decay of
boosted objects. Therefore, it is favorable to use a sequence ordering which makes the existence of
multiple hard cores of a jet distinctly apparent. This is achieved by ordering the constituents in kt-
distance order. More specifically, the nth constituent in the list is determined to be the constituent
with the highest kt-distance relative to the previous constituent, with the first constituent in the list
being the highest pT constituent after boosting:

cn = max(pTn�Rn,n�1). (3.1)

The effect on performance due to this choice of constituent ordering can be easily illustrated in
the case of a two-prong jet. In such a case, the sequence will start with a constituent in one of
the two cores of the jet, and be subsequently followed by a constituent belonging to the other core
and so on. This results in an easily predictable pattern which the VRNN is better able to identify,
particularly compared to a QCD jet. The resulting performance difference between pT -sorted and
kt-sorted inputs is shown in Figure 5. Using the same 10% contaminated dataset, the discrimination
between two-prong signal jets and background QCD jets is notably better when the VRNN input
sequence allows for detection of multi-prong substructure early on. It is also important to note
that the signal jets are assigned a lower Anomaly Score than the background QCD-like jets. This
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No Alignment With Alignment

• Goal: remove mass and pT information from input jets to avoid tagging on 
kinematics alone 

• Procedure: 
1. Rescale each jet to the same mass  
2. Boost each jet to the same energy  
3. Rotate each jet to the same η/Φ orientation 

• Result: anomaly score far less correlated with mass in background jets
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Sequence Ordering
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• In a recurrent architecture, apt sequence modeling of jets (eg. order of 
constituents) can highlight importance sequence features & boost performance  

• Select kt-distance ordering to highlight substructure: nth constituent has highest 
kt-distance relative to previous, starting with highest pT constituent

can be attributed to the same reason signal and background jets are distinguishable after applying
kt-sorted sequencing: jets with multi-prong substructure are more easily modeled by the VRNN,
and therefore result in an overall lower loss value when compared to QCD-like jets.

Figure 5. Leading jet Anomaly Score distributions for background and two-prong signal events, with pT -
sorted (left) and kt-sorted (right) ordering of constituents for input jets.

4 Results

One way in which the VRNN’s performance is studied is by assessing signal acceptance and back-
ground rejection at the jet level by using only the leading jet of each event. In addition, the Anomaly
Score can be applied to both the X and Y jets in an event and used to discriminate between sig-
nal and background in an event-level analysis context. Results of the VRNN’s performance are
provided for both approaches below.

Training is performed using the PYTORCH deep learning library [23]. The network is updated
using the Adam optimizer with a learning rate parameter of 10�5 [24]. No regularization via
weight decay is applied, however gradient clipping is implemented with a clip value of 10. Since
the training scenario is entirely unsupervised, the resulting Anomaly Score distributions from each
training dataset may vary. To arrive at a consistent score distribution, a transformation is applied
on the resulting Anomaly Score which aims to satisfy two conditions:

• The mean of the resulting distribution is at an Anomaly Score value of 0.5.

• Anomaly Scores closer to a value of 1 correspond to more signal-like jets. Note that this
reverses the previously observed feature displayed in Figure 5 where more signal-like jets
are assigned a lower Anomaly Score.
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Figure 4. Leading jet mass vs Anomaly Score distributions before (left) and after (right) applying the
boosting method detailed in Algorithm 1.

3.2 Sequence Ordering

After the boosting step has been performed, the effect of sequence ordering on the input con-
stituents has additionally been investigated. In fixed architecture models, such as VAEs or image-
based Convolutional Neural Networks (CNNs), the ordering of constituents in the list of training
inputs is seldom important. However, in recurrent architectures such as the VRNN, choosing a
sequence ordering method that highlights important sequence features can boost performance.

The objective of this study is to build a model which can differentiate between isotropic jets result-
ing from soft QCD interactions, and jets with multiple cores resulting from the hadronic decay of
boosted objects. Therefore, it is favorable to use a sequence ordering which makes the existence of
multiple hard cores of a jet distinctly apparent. This is achieved by ordering the constituents in kt-
distance order. More specifically, the nth constituent in the list is determined to be the constituent
with the highest kt-distance relative to the previous constituent, with the first constituent in the list
being the highest pT constituent after boosting:

cn = max(pTn�Rn,n�1). (3.1)

The effect on performance due to this choice of constituent ordering can be easily illustrated in
the case of a two-prong jet. In such a case, the sequence will start with a constituent in one of
the two cores of the jet, and be subsequently followed by a constituent belonging to the other core
and so on. This results in an easily predictable pattern which the VRNN is better able to identify,
particularly compared to a QCD jet. The resulting performance difference between pT -sorted and
kt-sorted inputs is shown in Figure 5. Using the same 10% contaminated dataset, the discrimination
between two-prong signal jets and background QCD jets is notably better when the VRNN input
sequence allows for detection of multi-prong substructure early on. It is also important to note
that the signal jets are assigned a lower Anomaly Score than the background QCD-like jets. This
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pT-sorted kt-sorted

• Result: better separation of two-prong signal from diffuse QCD background 
than pT-sorting
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Analysis Application
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Figure 7. Anomaly Score distributions from training over a dataset with 10% signal contamination after
applying the transformation described in Equation (4.1). The Anomaly Score in these figures is computed
from the leading jets of each event, for both the background sample and two-prong (left) or three-prong
(right) signal samples.

Figure 8 shows the mass distributions of the leading jet in signal, background-only, and signal-
contaminated datasets, before and after a jet-level selection requiring the Anomaly Score to exceed
a value of 0.65, corresponding to a rejection factor of about 6 for background jets. This value is
chosen in the interest of displaying the discriminating power of the Anomaly Score while retain-
ing enough background statistics to observe the background shape sculpting. The visibility of the
resonances at 100 GeV and 500 GeV is enhanced after the selection. Sculpting in the background
distribution is observed, which is an effect of mass correlation mainly introduced by the kt-ordered
sequencing, as there is a correlation between the number of hard cores in a jet and its mass. How-
ever, the observed sculpting is mainly a suppression of low mass events, and does not result in
the generation of peaks in the mass distribution. Both the signal enhancement and background
sculpting are similarly observed on three-pronged signatures in Figure 9, also shown for a 10%
contaminated dataset and an Anomaly Score cut of 0.65.
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ρ = 1 − e−DKL

2-prong 3-prong

The transformation can be summarized as

⇢0 = 1 �
✓

⇢

2⇢

◆
, (4.1)

where ⇢0 is the transformed Anomaly Score, and ⇢ is the mean of the un-transformed Anomaly
Score distribution of the training set.

4.1 Jet Level Performance

In the jet-level assessment, the model is trained on the leading jet of each event for 500 epochs.
To evaluate the trend in performance during training, a computation of the Receiver Operating
Characteristic’s Area Under the Curve (ROC AUC) is performed after each epoch by examining
events in the contaminated training set or comparing events in the background-only validation set
to those in the signal-only set. Figure 6 shows the results of this training scenario in the case
of 1% contamination. The VRNN quickly reaches its optimal performance, and retains a stable
performance throughout the training period.

Figure 6. Area Under the Curve (ROC AUC) vs. training time in epochs on a 1% signal-contaminated
dataset. The VRNN reaches an optimal performance quickly, and retains this performance over a long
training period. The difference in performance between the training and validation sets is a result of the
former containing elements of signal.

To evaluate the model’s performance, the weights corresponding to a training period of 100 epochs
were chosen in the following studies. Figure 7 shows the distributions of the Anomaly Score for
leading jets in the background sample and both the two-prong and three-prong signal samples
after training over a contaminated training set with 10% signal contamination and applying the
transformation in Equation (4.1).
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• Compute anomaly score for each jet 
- Higher KL divergence = higher loss = lower anomaly 

score 
➡ Transform such that higher AS corresponds to more 

anomalous jets

Jet Anomaly Score

• Analysis strategy: cut-and-count on   > 0.65 as sole signal region 
selection & test signal significance in bins of mJJ

ρ′�
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Results: 2-Prong Signal
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• Perform bump hunt on mJJ with selection on Event Score = max of two leading jet 
Anomaly Scores 

• Dataset = background + 1% signal contamination 
➡ Enhance a 0.5σ two-prong signal excess to 4.0σ solely from an Event Score cut 
at 0.65 

➡ Enhance a 0.5σ three-prong excess to 1.5σ using the same score

Figure 13. Two-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.

– 19 –

No cut Event Score > 0.65
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Figure 13. Two-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.

– 19 –

Results: 3-Prong Signal
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Figure 13. Two-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 4� while retaining the smoothly falling background distribution.

Figure 14. Three-prong dijet mass distributions before (left) and after (right) requiring the Event Score to ex-
ceed a value of 0.65, at a signal contamination of 1.0%. The Event Score selection provides an improvement
in signal sensitivity from 0.5� to 1.5� while retaining the smoothly falling background distribution.
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• Perform bump hunt on mJJ with selection on Event Score = max of two leading jet 
Anomaly Scores 

• Dataset = background + 1% signal contamination 
➡ Enhance a 0.5σ two-prong signal excess to 4.0σ solely from an Event Score cut 
at 0.65 

➡ Enhance a 0.5σ three-prong excess to 1.5σ using the same score

No cut Event Score > 0.65
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Conclusions
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• We demonstrate an application of the VRNN architecture to data-driven unsupervised 
learning on pp collisions 

- Many thanks to the LHC Olympics organizers for the dataset & guidance! 

• Resulting Anomaly Score is able to enhance both two- and three-prong substructure 
hypotheses over background from multijet processes 

• Assessing application towards ATLAS data/physics analysis 

➡ arXiv:2105.09274 & accepted to JINST!

  

https://arxiv.org/abs/2105.09274
https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
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Backup
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Technical Details

�14

• Dataset processing: amended pyjet with FastJet + 
fjcontrib functionality  

• PyTorch library  

• Optimizer: Adam, initial learning rate 10-5 

• 500 epochs 

• Regularization: gradient clipping with clip value 10

https://github.com/juliagonski/pyjet/tree/dev_jgonski
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Alignment Algorithm
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Algorithm 1 describes in detail the implementation of the rescaling, boosting, and rotating pro-
cesses, or simply boosting for short.

Algorithm 1: Jet Boosting
Start
Boost jet in z direction until ⌘Jet = 0

Rotate jet about z axis until �Jet = 0

Rescale jet four-vector such that mJet =0.25 GeV
Boost jet along its axis until EJet =1 GeV
Rotate jet about x axis until hardest constituent has ⌘1 = 0, �1 > 0

if Any constituents have �R > 1a then
Remove all constituents with �R > 1

Rebuild jet with remaining constituents
Repeat from start

else
continue

end
if Number of constituents > 20 then

Keep up-to the first 20 constituents, ordered in pT

Rebuild jet with remaining constituents
Repeat from start

else
continue

end
Reflect constituents about � axis such that the second hardest constituent has ⌘2 > 0

a�R is computed as
p

⌘2 + �2 for each constituent, where ⌘ and � are measured relative to the x axis.

To evaluate the efficacy of this procedure, the model is trained on a dataset of background jets both
before and after boosting, and the resulting correlation between Anomaly Score and jet mass is
compared. Figure 4 shows the two-dimensional distribution of the mass of the highest pT (leading)
jet in each event vs. its Anomaly Score before and after boosting the input jets. The results depict
a significantly smaller amount of correlation between the jet’s mass and its Anomaly Score after
boosting, as desired.

– 10 –



J. Gonski14 July 2021

Comparison to D2
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seen most prominently in the 200 to 400 GeV range of jet mass. This indicates that there is a
more significant correlation of D2 with jet mass while the Anomaly Score selection retains more
of the smoothly falling characteristics of the background jet mass distribution. Such a result can
be attributed largely to the boosting method used during pre-processing, as well as to the Anomaly
Score being determined only from jet constituent four-vector information, without any high-level
information being input into the model.

Figure 10. Comparison of the leading jet mass distribution in a contaminated dataset between equivalent
background acceptance selections on Anomaly Score and the D2 variable. The D2 selection causes more se-
vere sculpting in the jet mass distribution than the Anomaly Score, indicating that selections on the Anomaly
Score provide a more faithful representation of the original background mass distribution while still enhanc-
ing the presence of signal-like jets.

Another important study involves the model’s performance over a range of signal contamination
levels. Figure 11 shows the ROC AUC values of both two and three-pronged signal hypotheses
after training on each of the contaminated datasets described in Section 3. At each level of contam-
ination, the VRNN is trained on the leading jets of both the respective two-prong and three-prong
contaminated datasets for 100 epochs.

The resulting trained network is then used to assign an Anomaly Score to each leading jet in the
dataset. AUC values for each level of contamination are determined from a ROC curve built from
1000 randomly selected jets from both the background and signal sets after training. Error bars are
computed by repeating this process 100 times and determining the standard deviation of the result-
ing distribution of AUC values. Notably, the performance is consistent along all contaminations,
and able to distinguish both two and three-pronged signals without any prior substructure hypoth-
esis. The Anomaly Score can therefore be interpreted as a quantity which is capable of adequately
and consistently parametrizing multiple distinct substructure scenarios. This feature is valuable in
model-independent searches, or those without a pre-defined signal substructure hypothesis.
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• Dataset = 2-prong X% contaminated  
• Selections: D2 < 1.4 / AS > 0.65 (equivalent 
background rejection) 
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Figure 11. ROC AUC vs. percent signal contamination in training datasets. The performance of the
Anomaly Score is consistent across a wide range of contamination levels.

The ability of the Anomaly Score to be consistently performant along a large range of contami-
nations is unexpected in the context of anomaly detection, where the dilution of the training set
with a high number of signal elements is expected to result in lower performance. The consistent
performance observed can be attributed to the choice of kt-ordered sequencing and the representa-
tion of jets as variable-length sequences of constituents. Since the choice of kt-ordered sequencing
highlights the presence of multiple hard cores within a jet, the VRNN’s Anomaly Score is predis-
posed to correlate with signal jets due to their anomalous substructure regardless of the level of
contamination.

4.2 Event Level Performance

A natural benchmark of the Anomaly Score’s ability to distinguish anomalous jets is to apply the
score in an analysis-like context. In this study, the goal is to reconstruct the Z 0 particle in the
invariant mass spectrum MJJ of the two jets in each signal event. To do this, the network is trained
on both the leading and sub-leading jets, with one set of network weights saved for each amount of
contamination.

Since the model produces one Anomaly Score per jet, the Anomaly Scores for the leading and sub-
leading jet must be combined to arrive at an overall Event Score. In this study, the Event Score is
chosen to be the highest of the two individual Anomaly Scores between the leading and sub-leading
jets. This constructs an event-level discriminant which uses the most anomalous jet in the event to
discriminate. The ability of the Event Score to distinguish signal from background is illustrated in
Figure 12, showing the correlations between the dijet invariant mass and the assigned Event Score
in a dataset with 10% signal contamination. The significant feature of the 3500 GeV Z 0 occupies
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The transformation can be summarized as

⇢0 = 1 �
✓

⇢

2⇢

◆
, (4.1)

where ⇢0 is the transformed Anomaly Score, and ⇢ is the mean of the un-transformed Anomaly
Score distribution of the training set.

4.1 Jet Level Performance

In the jet-level assessment, the model is trained on the leading jet of each event for 500 epochs.
To evaluate the trend in performance during training, a computation of the Receiver Operating
Characteristic’s Area Under the Curve (ROC AUC) is performed after each epoch by examining
events in the contaminated training set or comparing events in the background-only validation set
to those in the signal-only set. Figure 6 shows the results of this training scenario in the case
of 1% contamination. The VRNN quickly reaches its optimal performance, and retains a stable
performance throughout the training period.

Figure 6. Area Under the Curve (ROC AUC) vs. training time in epochs on a 1% signal-contaminated
dataset. The VRNN reaches an optimal performance quickly, and retains this performance over a long
training period. The difference in performance between the training and validation sets is a result of the
former containing elements of signal.

To evaluate the model’s performance, the weights corresponding to a training period of 100 epochs
were chosen in the following studies. Figure 7 shows the distributions of the Anomaly Score for
leading jets in the background sample and both the two-prong and three-prong signal samples
after training over a contaminated training set with 10% signal contamination and applying the
transformation in Equation (4.1).
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• Jets = sprays of hadronic particles reconstructed with clustering algorithms into 
a cone  

• Higher mass exclusions for new particles + high energy collisions = high 
momentum outputs  

- Constituents: individual hadrons in jet  
- Boosting: collimation of constituents due to high momentum parent 
- Substructure: synthesizing correlations between jet constituents to determine particle 

content in large radius jet 

2-prong 3-prongNo 
substructure

Single q/g H→bbLarge-radius jetSmall-radius jets t→W(qq)b


