Searches for new resonant phenomena in final states with two jets using the ATLAS detector

University of Washington

DPF Meeting 2021 July 13, 2021

Elham E Khoda

Outline

Search for dijet and di-bjet resonances JHEP 03 (2020) 145

JHEP 10 (2020) 061

Elham E Khoda (UW)

New resonance in two jet final states

Search for tt resonance in fully hadronic final state

Dijet Resonance

Resonance search in two jet final state

- - Dark matter particle e.t.c

Dijet Search Result

- Single jet trigger with $p_T > 420$ GeV
- Jets are back-to-back
- $\Delta \Phi$ (J₁,J₂) > 1.0 (back-to-back)

Elham E Khoda (UW)

- Observable: invariant mass of the di-jet system (m_{jj})
- Calculated with R=0.4 jets

Di-jet mass $(m_{jj}) > 1.1 \text{ TeV}$

New resonance in two jet final states

Final states with b-jets

- Displaced secondary vertex
- Deep Neural Network based b-tagging used for the first time in ATLAS

2 b-tag region == 2 b-tagged jet

Inclusive I b-tag region >= | b-tagged jet

Eur. Phys. J. C 79 (2019) 970

Search results

- Variable binning used
- No evidence of new resonances was observed
- Global p-values are < 1 sigma

Elham E Khoda (UW)

New resonance in two jet final states

Exclusion limit

• Upper limits at 95% confidence level on signal cross section

Catagory	Model	Lower limit on signal mass at		
Category	Widdei	Observed	Expected	
Inclusive	q^*	6.7 TeV	6.4 TeV	
	QBH	9.4 TeV	9.4 TeV	
	W'	4.0 TeV	4.2 TeV	
	W *	3.9 TeV	4.1 TeV	
	DM mediator Z' , $g_q = 0.20$	3.8 TeV	3.8 TeV	
	DM mediator Z' , $g_q = 0.50$	4.6 TeV	4.9 TeV	
1 <i>b</i>	<i>b</i> *	3.2 TeV	3.1 TeV	
2 <i>b</i>	DM mediator $Z' g_q = 0.20$	2.8 TeV	2.8 TeV	
	DM mediator Z' , $g_q = 0.25$	2.9 TeV	3.0 TeV	
	SSM Z' ,	2.7 TeV	2.7 TeV	
	graviton, $k/\overline{M}_{\rm PL} = 0.2$	2.8 TeV	2.9 TeV	

<u>JHEP 03 (2020) 145</u>

Search for ttbar resonance in boosted all-hadronic final state

Final states with top-jets

• Final states with two top-quarks are more complicated

Resonant $t\bar{t}$ production

all-hadronic top-decay channel 46% Branching Franction

Elham E Khoda (UW)

At least 6 jets in the final state

Boosted top-quark decay

- All three jets comming from a high momentum top-quark are close to each other
- Forms a large radius jet (R=I)

•ttbar final state becomes easier to study in the boosted regime

• Six jets \longrightarrow 2 large-R jets (R=1.0)

top-tagging

- Identifies boosted top quark
- Probes the 3-prong structure of the top jets

• DNN-based top tagging technique • Factor 2 improvement in bkg rejection

Phys. Rev. D 99 (2019) 092004

Signal Regions

- •**b-jet:** DLI 77% efficiency Working Point
- •**Top-jets** \rightarrow **b-jet** association : $\Delta R < 1.0$

2 b-jets

- Observable: Mass of the t-tbar system (m_{tt})
- Calculated from the large-R jets (top-tagged)

• Interpretations:

- Top color assisted technicolor: Z'_{TC2} (1%,1.2% and 3%) width)
- Vector and Axial-vector mediator Dark matter Z'

Background estimation

- Dominant backgrounds: SM ttbar production and QCD multi jet processes
- The total background is estimated from data by a functional fit to data
- Smoothly falling background function: $f(x) = p_0(1-x)^{p_1} x^{p_2+p_3\log(x)}$
- The function form and uncertainties are estimated using simulate ttbar and QCD multijet

m_{tt} distributions

- No significant discrepancy observed in data
- Global significance: < 0.2 sigma

m_{tf}^{reco} [GeV]

Elham E Khoda (UW)

<u>|HEP 10 (2020) 061</u>

Exclusion limit

 Z'_{TC2} mass excluded up to 3.9 and 4.7 TeV for 1% and 3% widths

- New analysis techniques Improved the cross section limit by 2 times
- Almost 4 times increase in data Improved cross section limit by another factor of 2

Elham E Khoda (UW)

<u>**IHEP 10 (2020) 061**</u>

New resonance in two jet final states

DM interpretation

- Assuming no coupling to leptons
- Full Run-II ttbar resonance results are not added yet

ATL-PHYS-PUB-2020-021

New resonance in two jet final states

Summary

Search for dijet and di-bjet resonances

Search for tt resonances in fully hadronic final state

More results with full Run-II LHC data is coming soon. Stay tuned!

New resonance in two jet final states

Elham E Khoda (UW)

• Cross section limit improves by a factor within 1.2 and 3.5 • Maximum improvement at 4 TeV • The b-tagged analysis benefits from the DNN-based b-tagger

• New top-tagging, b-tagging and background estimation method provide large improvements

• 65% improvement in the expected cross-section limit at 4 TeV! • I TeV improvement in mass limit for 1.2% Z' (TC2 model)

Thank you for your attention

Elham E Khoda (UW)

Elham E Khoda (UW)

Extra slides

Full Run-2 data (2015-2018)

Elham E Khoda (UW)

New resonance in two jet final states

Dijet/di-bjet selection table

Category	Inclusiv	ve	1 <i>b</i>	2b	
Jet $p_{\rm T}$	> 150 GeV				
Jet ϕ	$ \Delta\phi(jj) > 1.0$				
Jet $ \eta $	-		< 2.0		
y*	< 0.6	< 1.2	< 0.8		
<i>m</i> _{jj}	> 1100 GeV	> 1717 GeV	> 11	1133 GeV	
b-tagging	no requirement		$\geq 1 b$ -tagged jet	2 b-tagged jets	
	DM mediator Z'	W*	<i>b</i> *	DM mediator $Z'(b\bar{b})$	
	W'		Generic Gaussian	SSM $Z'(b\bar{b})$	
Signal	q^*			graviton $(b\bar{b})$	
	QBH			Generic Gaussian	
	Generic Gaussian				

Background estimation

• Smoothly falling background function:

 $f(x) = p_0(1-x)^{p_1} x^{p_2+p_3\log(x)}$

- Data is fitted in small widow using sliding window fit method

• The function is validated in Signal Regions (SR) using background-only template

The quality of the fit to the data:

- Global Chi-square p-value > 0.05
- BumpHunter p-value > 0.01

Improvements in top-tagging

- First analysis using the new high level DNN top-tagger in ATLAS
- Around 4x improvement in background rejection at very high pT region
- Improves background rejection at high ttbar mass

Elham E Khoda (UW)

Eur. Phys. J. C 79 (2019) 375

Variables used in the DNN top-tagger

Table 1: Summary of jet moments studied along with an indication of the tagger topology to which the observable is applicable. In the case of the energy correlation observables, the angular exponent β is set to 1.0 and for the N-subjettiness observables, the winner-take-all [55] configuration is used. A concise description of each jet moment can be found in Ref. [8].

Variable	Used for	References
$p_{\rm T}, m^{\rm comb}$	top,W	[<mark>46</mark>]
e_3, C_2, D_2	top,W	[52, 56]
$\tau_1, \tau_2, \tau_{21}$	top, W	[57, 58]
$ au_{3}, au_{32}$	top	
$R_2^{\rm FW}$	W	[59 , 60]
Zcut	W	[61 , 62]
$\sqrt{d_{12}}$	top, W	
$\sqrt{d_{23}}$	top	
${\cal P}$	W	[<mark>63</mark>]
a_3	W	[<mark>64</mark>]
Α	W	[<mark>60</mark>]
<i>KtDR</i>	W	[<mark>65</mark>]
Q_w	top	[<mark>61</mark>]

Eur. Phys. J. C 79 (2019) 375

Inclusive Signal Regions

Inclusive Signal Regions

no b-jet requirement

Elham E Khoda (UW)

$$y^* = (y_1 - y_2)/2$$

 y_1 = rapidity of leading jet

 y_2 = rapidity of sub-leading jet

Search result: No b-jet requirement

- Use BUMPHUNTER for signal search
- as observed in the data
- Variable binning used
- No evidence of new resonances was observed

Elham E Khoda (UW)

<u>IHEP 03 (2020) 145</u>

• BUMPHUNTER p-value: probability of random fluctuations to create at least as much excess

Exclusion limit: Inclusive selection

Event selection

- Large-R jet trigger $p_T > 360-460$ GeV depending on data period
- Lepton veto: Required exactly 0 lepton (el/mu) in the event
- >= 2 large radius jets with:
 - pT,JI > 500 GeV and pT,J2 > 350 GeV
 - $\Delta \Phi$ (J₁,J₂) > 1.6 (back-to-back)
 - $\Delta y(J_1, J_2) < 1.8$ (remove t-channel SM ttbar production)

- Leading and sub-leading large-R jets are top-tagged (DNN top tagger)
- m_{tt} > 1.4 TeV

Elham E Khoda (UW)

y = rapidity

ATLAS-PHOTO-2018-002

Control and Signal Regions

- Top-jets are matched with b-tagged track jets (DLI efficiency 77% WP) in the SR
 - **0 b-tag Control Region:** No b-jet close (dR < 1.0) to the top jets
 - **I b-tag Signal Region:** One b-jet close to one of the top jets **2 b-tag Signal Region:** Each top jet is associated with a b-jet

Elham E Khoda (UW)

2 b-tag Signal Region (SR2b)

b-tagging performance

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2018-01/

Elham E Khoda (UW)

New resonance in two jet final states

Signal acceptance X efficiency

Dijet/di-bjet Limit: inclusive

Dijet/di-bjet Limit: 2 b-tag region

Dijet Analysis: cross section improvement

Signal Injection Test

- Ability of extracting signal was tested by **injecting known signal**
- Do a s+b fit
- Signal function: Gaussian + Crystal Ball
- Extracted vs injected strength: linear trend

Spurious Signal Test

Number of fit parameters optimized based on the following:

- I. lowest chiSq
- 2. Wilk's test
- 3. Minimize the spurious signal yield obtained by s+b fit to this b-only template
- Signal shape dependent "localized" uncertainty is assigned as spurious signal unc.

Selection Efficiency

- Acceptance times efficiency as a function of the invariant mass of a top-quark pair at the generator level
- Acc x eff is around 7% (IbSR) and 5 % (2bSR)

DM interpretation: coupling Vs mediator mass

Elham E Khoda (UW)

ATL-PHYS-PUB-2020-021

New resonance in two jet final states

The ATLAS Experiment

General purpose detector

Toroidal Magnet: 0.5 T

Muon Spectrometer: four different detector technology

Solenoid Magnet: 2.0 T

Inner Detector:

three different detector technology

I. Silicon Pixel 2. Silicon Strip 3. Straw Tubes: Transition Radiati Tracker (TRT)

Elham E Khoda (UW)

Calorimeter: Electromagnetic (Liquid Argon), Hadronic (Liquid Argon (endcap) & Tile (barrel))

New resonance in two jet final states

Background composition: tt res all-had

Table 11: Event yields in the $|\Delta y(J, J)| < 1.80$, 1 and 2 *b*-tag regions in 2015+2016+2017+2018 data.

Туре	btag cat.0		
<i>tī</i> (all-had)	2842.1 ± 1191.3 (2.5%)		
<i>tī</i> (non-all-had)	$261.8 \pm 99.1 \ (0.2\%)$		
Multijet	$110536.6 \pm 1329.2(97.3\%)$		
Total	113640.5 ± 350.3		
Data	113612 ± 337.1		

btag cat.1 btag cat.2 $5967.1 \pm$ 43.2 (21.1%) 6195.7± 38.4(75.9%) $500.7 \pm$ 9.9 (1.8%) $229.2 \pm$ 5.2 (2.8%) $21794.8 \pm 104.5(77.1\%)$ $1734.5 \pm$ 11.8(21.3%) 28262.7 ± 113.4 $8159.4 \pm$ 40.4 26964 ± 164.2 8160 ± 90.3

Systematic Uncertainties: tt res all-had

Major contribution comes from JES uncertainty (all combined shown here)

Source	2 TeV Z' [%]		4 TeV Z' [%]	
	SR1b	SR2b	SR1b	SR2b
JES	35	34	47	44
JMS	5.0	4.3	9.5	7.9
JER	0.1	0.1	0.1	< 0.1
JMR	3.9	4.0	8.0	8.0
<i>b</i> -tagging	14	5.0	23	5.3
Top-tagging	9.0	9.3	10	10

