Contribution ID: 134

Type: talk

Radiation Modeling and Shielding Design for the Mu2e Branching Ratio Normalization Detectors

Tuesday, 13 July 2021 17:15 (15 minutes)

The Mu2e experiment will search for Beyond-the-Standard-Model, Charged Lepton Flavor Violation (CLFV) in the neutrinoless muon-to-electron conversion process $\mu^- + Al \rightarrow e^- + Al$. The number of muons stopped and captured by the aluminum Stopping Target is measured by the Stopping Target Monitor (STM) using muon atomic capture x-rays and muon nuclear capture $\gamma\text{-rays}.$ An HPGe detector with \sim 0.8 keV Gaussian resolution at 662 keV, and with an estimated photon rate capability of \sim 100 kcps along with a LaBr₃ detector with Gaussian energy resolution of 7 keV at 662 keV, with an estimated photon rate capability \sim 800 kcps are used to report the muon capture rate. In one beam-on second, 2.3×10^{13} protons hit the Production Target, 3.7×10^{10} muons are stopped in the Stopping Target and together, generate an energy flux of 3.2×10^8 TeV ${\rm cm}^{-2}~{
m sec}^{-1}$ consisting of muons, electrons, neutrons, x-rays, and γ -rays, with mean particle energy \sim 10 MeV. In order to measure the number of stopped muons in the experiment, the energy flux must be reduced by a factor of 5×10^8 for the LaBr₃ detector and 3×10^9 for the HPGe detector. In order to accomplish this reduction, a detector shielding house is placed 35 m from the target, downstream of a beam line consisting of poly absorbers and a sweeping magnet, and containing a tungsten collimator with 0.5 cm² apertures. A combination of lead, tungsten, copper and aluminum are layered to achieve the shielding goals. Borated polyethylene is used to absorb neutrons. Separate protection plans are made for the HPGe detector and the LaBr₃ detector because of their different rate and radiation sensitivities. Rate and energy flux requirement for the detectors are shown to be satisfied using Geant4 simulations.

Are you are a member of the APS Division of Particles and Fields?

Yes

Primary author: CAO, Haichuan (Purdue University)

Co-authors: Mr HUANG, Shihua (Purdue University); Ms CHEN, Jijun (Purdue University); Mr MILLER, James (Boston University); Mr EDMONDS, Andrew (Boston University); Mr GINTHER, George (Fermi National Accelerator Laboratory); Mr QUIRK, John (Boston University); Mr LYNCH, Kevin (City University of New York); Mr BHI-RANGI, Aniket (Purdue University); Mr KENNY, Vinay (Purdue University); TRAN, Nam (Bosten University); Ms CASLER, Helenka (City University of New York); Ms BARKER, Jana (Fermi National Accelerator Laboratory); Mr POPP, Jim (City University of New York); Mr KOLTICK, David (Purdue University); Ms BRENNAN, Laura (University Liverpool); Mr MULLER, Stefan (Helmholtz-Zentrum, Dresden-Rossendorf); Mr MOTUK, Erdem (University College London); Mr CHISLETT, Rebecca (University College London); Mr GERSABECK, Marco (University of Manchester); Ms FERRARI, Anna (Helmholtz-Zentrum, Dresden-Rossendorf); Mr GLASS, Hank (Fermi National Accelerator Laboratory); Mr JUDON, Dan (University Liverpool); KNODEL, Oliver (Helmholtz-Zentrum, Dresden-Rossendorf); Mr LANCASTER, Mark (University of Manchester)

Presenter: CAO, Haichuan (Purdue University)

Session Classification: Particle Detectors

Track Classification: Particle Detectors